Bai Ziqian, Wei Zenghui, Zhu Shiyang, He Gang, Wang Hao, Chen Gong
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.
Sci Adv. 2025 Feb 21;11(8):eadu7747. doi: 10.1126/sciadv.adu7747.
Glycosylation chemistry plays a pivotal role in glycoscience. Recent substantial developments have poised the field to address emerging challenges related to sustainability, cost efficiency, and robust applicability in complex substrate settings. The transition from stoichiometric activation to metal-catalyzed methods promises enhanced chemoselectivity and greater precision in controlling glycosidic bond breakage and formation, key to overcoming existing obstacles. Here, we report a nitrene-mediated glycosylation strategy using regular aryl sulfide glycosyl donors and easily accessible 3-methyl dioxazolone as an activator under the catalysis of iron or ruthenium. The iron-catalyzed system demonstrates exceptional catalytic reactivity, requiring as little as 0.1 mole % of catalyst at room temperature, and works well for complex peptide substrates. The ruthenium-catalyzed system can accommodate acid-sensitive functional groups and challenging low-reactivity acceptors. Mechanistic investigations have unveiled unusual multistep pathways involving sulfur imidation of sulfide donors via nitrene transfer and sulfur-to-oxygen rearrangement of -acyl sulfilimines for the nitrene-mediated activation of sulfide donors.
糖基化化学在糖科学中起着关键作用。最近的重大进展使该领域有能力应对与可持续性、成本效益以及在复杂底物环境中的强大适用性相关的新挑战。从化学计量活化向金属催化方法的转变有望提高化学选择性,并在控制糖苷键的断裂和形成方面具有更高的精度,这是克服现有障碍的关键。在此,我们报道了一种氮宾介导的糖基化策略,该策略使用常规芳基硫醚糖基供体和易于获得的3-甲基二恶唑酮作为活化剂,在铁或钌的催化下进行反应。铁催化体系表现出卓越的催化活性,在室温下仅需0.1摩尔%的催化剂,并且对复杂的肽底物效果良好。钌催化体系能够兼容酸敏感官能团以及具有挑战性的低反应活性受体。机理研究揭示了不寻常的多步途径,包括通过氮宾转移对硫醚供体进行硫亚胺化以及对酰基硫亚胺进行硫到氧的重排,用于氮宾介导的硫醚供体活化。