Suppr超能文献

基于端粒相关基因的骨肉瘤预后模型及免疫特征分析

Prognostic model of osteosarcoma based on telomere-related genes and analysis of immune characteristics.

作者信息

Liu Zheyuan, Liu Xiaoyu

机构信息

China Medical University Liaoning Province Shenyang City China.

Hebei Engineering University Affiliated Hospital Hebei Province Handan City China.

出版信息

Int Immunopharmacol. 2025 Apr 4;151:114198. doi: 10.1016/j.intimp.2025.114198. Epub 2025 Feb 20.

Abstract

OBJECTIVE

Osteosarcoma is a malignant tumor with significant challenges in treatment and prognosis. Telomeres play a crucial role in genetic stability and tumor development, and telomere-related genes (TRGs) have shown considerable prognostic potential in various cancers. However, the prognostic significance of TRGs in osteosarcoma and their involvement in the tumor immune microenvironment (TIME) remain poorly understood.

METHOD

This study initially identified 2086 TRGs from the TelNet database as candidate genes. Using RNA sequencing and clinical data from osteosarcoma patients available in the TARGET and GEO public databases, we developed a TRG-based prognostic scoring model through univariate, LASSO regression, and multivariate Cox regression analyses, with its predictive performance subsequently validated. Unsupervised clustering was performed on TRGs associated with prognosis. To investigate the TIME, we utilized several algorithms including ESTIMATE, CIBERSORT, xCELL, and ssGSEA to analyze the immune landscape associated with TRG patterns. Additionally, functional enrichment analysis of different subtypes was conducted using KEGG, GO, and GSVA approaches. We also performed single-cell localization and drug sensitivity analysis on the prognostic model genes. Finally, the predictive results were preliminarily validated through a series of in vitro experiments.

RESULT

Differential expression analysis revealed 841 TRGs with significant changes in osteosarcoma, where P-value < 0.05 and |logFC| ≥ 1. Based on the prognostic relevance of these TRGs, we successfully identified two subtypes with distinct clinical and immune characteristics. Immune infiltration levels between Cluster 1 and Cluster 2 were significantly different, as assessed by multiple algorithms. Furthermore, we constructed a prognostic scoring model based on TRGs, which demonstrated excellent predictive performance, with AUC values for 1-year, 3-year, and 5-year ROC curves being 92.43 %, 87.08 %, and 84.34 % in the training cohort, respectively, and 74.49 %, 87.77 %, and 94.52 % in the validation cohort, indicating good stability of the model. Notably, functional enrichment analysis highlighted a strong association between immune dysfunction and poor prognosis, while drug sensitivity analysis offered personalized chemotherapy recommendations for osteosarcoma patients with different subtypes. We observed that Fludarabine had a higher IC50 value in the high-risk group compared to the low-risk group, and it showed a strong correlation with the prognostic model genes, with all P-values less than 0.05.

CONCLUSION

This study successfully constructed a prognostic risk prediction model for osteosarcoma by systematically analyzing the expression patterns of TRGs. Fludarabine may represent a promising therapeutic option for patients with osteosarcoma.

摘要

目的

骨肉瘤是一种在治疗和预后方面面临重大挑战的恶性肿瘤。端粒在基因稳定性和肿瘤发展中起着关键作用,端粒相关基因(TRGs)在多种癌症中已显示出相当大的预后潜力。然而,TRGs在骨肉瘤中的预后意义及其在肿瘤免疫微环境(TIME)中的作用仍知之甚少。

方法

本研究最初从TelNet数据库中鉴定出2086个TRGs作为候选基因。利用TARGET和GEO公共数据库中骨肉瘤患者的RNA测序和临床数据,我们通过单变量、LASSO回归和多变量Cox回归分析建立了基于TRGs的预后评分模型,并随后验证了其预测性能。对与预后相关的TRGs进行无监督聚类。为了研究TIME,我们利用了包括ESTIMATE、CIBERSORT、xCELL和ssGSEA在内的几种算法来分析与TRG模式相关的免疫格局。此外,使用KEGG、GO和GSVA方法对不同亚型进行功能富集分析。我们还对预后模型基因进行了单细胞定位和药物敏感性分析。最后,通过一系列体外实验初步验证了预测结果。

结果

差异表达分析显示,在骨肉瘤中有841个TRGs发生了显著变化,其中P值<0.05且|logFC|≥1。基于这些TRGs的预后相关性,我们成功鉴定出两种具有不同临床和免疫特征的亚型。通过多种算法评估,第1组和第2组之间的免疫浸润水平存在显著差异。此外,我们构建了一个基于TRGs的预后评分模型,该模型显示出优异的预测性能,训练队列中1年、3年和5年ROC曲线的AUC值分别为92.43%、87.08%和84.34%,验证队列中分别为74.49%、87.77%和94.52%,表明该模型具有良好的稳定性。值得注意的是,功能富集分析突出了免疫功能障碍与预后不良之间的密切关联,而药物敏感性分析为不同亚型的骨肉瘤患者提供了个性化的化疗建议。我们观察到,氟达拉滨在高危组中的IC50值高于低危组,并且它与预后模型基因显示出很强的相关性,所有P值均小于0.05。

结论

本研究通过系统分析TRGs的表达模式,成功构建了骨肉瘤的预后风险预测模型。氟达拉滨可能是骨肉瘤患者的一种有前景的治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验