Suppr超能文献

IDX-DR检测糖尿病视网膜病变的诊断准确性:一项系统评价和Meta分析

Diagnostic Accuracy of IDX-DR for Detecting Diabetic Retinopathy: A Systematic Review and Meta-Analysis.

作者信息

Khan Zaid, Gaidhane Abhay M, Singh Mahendra, Ganesan Subbulakshmi, Kaur Mandeep, Sharma Girish Chandra, Rani Pooja, Sharma Rsk, Thapliyal Shailendra, Kushwaha Monam, Kumar Harish, Agarwal Rajat Kumar, Shabil Muhammed, Verma Lokesh, Sidhu Amritpal, Manan Norhafizah Binti Ab, Bushi Ganesh, Mehta Rachana, Sah Sanjit, Satapathy Prakasini, Samal Shailesh Kumar

机构信息

Evidence for Policy and Learning, Global Center for Evidence Synthesis (Z.K.), Chandigarh, Punjab, India.

Jawaharlal Nehru Medical College, and Global Health Academy (A.M.G), School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, Maharashtra, India.

出版信息

Am J Ophthalmol. 2025 May;273:192-204. doi: 10.1016/j.ajo.2025.02.022. Epub 2025 Feb 20.

Abstract

PURPOSE

Diabetic retinopathy (DR) is a leading cause of vision loss worldwide, making early detection critical to prevent blindness. IDX-DR, an FDA-approved autonomous artificial intelligence (AI) system, has emerged as an innovative solution to improve access to DR screening. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of IDX-DR in detecting diabetic retinopathy.

DESIGN

Systematic review and meta-analysis.

METHODS

A comprehensive literature search was conducted across PubMed, Embase, Scopus and Web of Science, identifying studies published through October 5, 2024. Studies involving adult patients with Type 1 or Type 2 diabetes and reporting diagnostic metrics such as sensitivity and specificity were included. The primary outcomes were pooled sensitivity and specificity of IDX-DR. A bivariate random-effects model was used for meta-analysis, and summary receiver operating characteristic (SROC) curves were generated to assess diagnostic performance. Statistical analyses were performed using MetaDisc software version 2.0.

RESULTS

Thirteen studies involving 13,233 participants met the inclusion criteria. IDX-DR's pooled sensitivity was 0.95 (95% CI: 0.82-0.99), and its pooled specificity was 0.91 (95% CI: 0.84-0.95). The SROC curve confirmed IDX-DR's high diagnostic accuracy in detecting diabetic retinopathy across various clinical environments. The AUC value of 0.95 demonstrated high sensitivity and specificity, indicating a robust diagnostic performance for IDX-DR in detecting diabetic retinopathy.

CONCLUSION

IDX-DR is a highly effective diagnostic tool for diabetic retinopathy screening, with robust sensitivity and good specificity. Its integration into clinical practice, especially in resource-limited settings, can potentially improve early detection and reduce vision loss. However, careful implementation is needed to address challenges such as over-diagnosis and ensure the tool complements clinical judgment. Future studies should explore the long-term impacts of AI-based screening and address ethical considerations surrounding its use.

摘要

目的

糖尿病视网膜病变(DR)是全球视力丧失的主要原因,因此早期检测对于预防失明至关重要。IDX-DR是一种经美国食品药品监督管理局(FDA)批准的自主人工智能(AI)系统,已成为改善糖尿病视网膜病变筛查可及性的创新解决方案。本系统评价和荟萃分析旨在评估IDX-DR在检测糖尿病视网膜病变方面的诊断准确性。

设计

系统评价和荟萃分析。

方法

在PubMed、Embase、Scopus和Web of Science数据库中进行全面的文献检索,识别截至2024年10月5日发表的研究。纳入涉及1型或2型糖尿病成年患者并报告敏感性和特异性等诊断指标的研究。主要结局为IDX-DR的合并敏感性和特异性。采用双变量随机效应模型进行荟萃分析,并生成汇总受试者工作特征(SROC)曲线以评估诊断性能。使用MetaDisc软件2.0版进行统计分析。

结果

13项研究共13233名参与者符合纳入标准。IDX-DR的合并敏感性为0.95(95%CI:0.82-0.99),合并特异性为0.91(95%CI:0.84-0.95)。SROC曲线证实IDX-DR在各种临床环境中检测糖尿病视网膜病变具有较高的诊断准确性。0.95的AUC值显示出高敏感性和特异性,表明IDX-DR在检测糖尿病视网膜病变方面具有强大的诊断性能。

结论

IDX-DR是糖尿病视网膜病变筛查的高效诊断工具,具有较高的敏感性和良好的特异性。将其纳入临床实践,尤其是在资源有限的环境中,可能会改善早期检测并减少视力丧失。然而,需要谨慎实施以应对过度诊断等挑战,并确保该工具能辅助临床判断。未来的研究应探索基于人工智能的筛查的长期影响,并解决围绕其使用的伦理问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验