Fiszer Jan, Ciupek Dominika, Malawski Maciej, Pieciak Tomasz
Sano Centre for Computational Medicine, Kraków, Poland.
AGH University of Science and Technology, Kraków, Poland.
bioRxiv. 2025 Feb 11:2025.02.09.637305. doi: 10.1101/2025.02.09.637305.
Deep learning (DL)-based image synthesis has recently gained enormous interest in medical imaging, allowing for generating multi-contrast data and therefore, the recovery of missing samples from interrupted or artefact-distorted acquisitions. However, the accuracy of DL models heavily relies on the representativeness of the training datasets naturally characterized by their distributions, experimental setups or preprocessing schemes. These complicate generalizing DL models across multi-site heterogeneous data sets while maintaining the confidentiality of the data. One of the possible solutions is to employ federated learning (FL), which enables the collaborative training of a DL model in a decentralized manner, demanding the involved sites to share only the characteristics of the models without transferring their sensitive medical data. The paper presents a DL-based magnetic resonance (MR) data translation in a FL way. We introduce a new aggregation strategy called FedBAdam that couples two state-of-the-art methods with complementary strengths by incorporating momentum in the aggregation scheme and skipping the batch normalization layers. The work comprehensively validates 10 FL-based strategies for an image-to-image multi-contrast MR translation, considering healthy and tumorous brain scans from five different institutions. Our study has revealed that the FedBAdam shows superior results in terms of mean squared error and structural similarity index over personalized methods, like the FedMRI, and standard FL-based aggregation techniques, such as the FedAvg or FedProx, considering multi-site multi-vendor heterogeneous environment. The FedBAdam has prevented the overfitting of the model and gradually reached the optimal model parameters, exhibiting no oscillations.
基于深度学习(DL)的图像合成最近在医学成像领域引起了极大的关注,它能够生成多对比度数据,从而从中断或受伪影干扰的采集中恢复缺失的样本。然而,DL模型的准确性在很大程度上依赖于训练数据集的代表性,这些数据集的自然特征包括其分布、实验设置或预处理方案。这些因素使得在跨多站点异构数据集推广DL模型的同时保持数据的保密性变得复杂。一种可能的解决方案是采用联邦学习(FL),它能够以分散的方式对DL模型进行协作训练,要求参与的站点仅共享模型的特征,而不传输其敏感的医学数据。本文提出了一种基于FL的磁共振(MR)数据转换方法。我们引入了一种名为FedBAdam的新聚合策略,该策略通过在聚合方案中纳入动量并跳过批归一化层,将两种具有互补优势的先进方法结合起来。这项工作全面验证了10种基于FL的策略用于图像到图像的多对比度MR转换,考虑了来自五个不同机构的健康和肿瘤脑部扫描数据。我们的研究表明,在多站点多供应商异构环境下,与个性化方法(如FedMRI)和基于标准FL的聚合技术(如FedAvg或FedProx)相比,FedBAdam在均方误差和结构相似性指数方面表现出更优的结果。FedBAdam防止了模型的过拟合,并逐渐达到最优模型参数,没有出现振荡。