Uchida Keita, Scarborough Emily A, Prosser Benjamin L
Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
bioRxiv. 2025 Feb 11:2025.02.10.635974. doi: 10.1101/2025.02.10.635974.
Cardiac hypertrophy allows post-mitotic cardiomyocytes to meet increased hemodynamic demands but can predispose the heart to adverse clinical outcomes. Despite its central role in cardiac adaptation, the translational control mechanisms that drive cardiac hypertrophy are poorly understood. In this study, we elucidate the relative contributions of the various translational control mechanisms operant during homeostasis and hypertrophic growth.
A combination of immunofluorescence and single myocyte protein synthesis assays were used to dissect the single-cardiomyocyte mechanisms of translational control under basal and hypertrophic conditions in isolated adult rat cardiomyocytes. Translational control mechanism were examined in a mouse model of acute hypertrophic phenylephrine (PE) stimulation prior to overt cardiac growth.
We observed strikingly heterogeneous activity of mTORC1, the master regulator of translation, across cardiomyocytes both and . Heterogeneous mTORC1 activity drove heterogeneous protein synthesis, with translation primarily controlled via canonical mTORC1-dependent 4EBP1 phosphorylation at Thr36/Thr45/Thr69 under baseline conditions. Hypertrophic PE stimulation recruited more cardiomyocytes into a high mTORC1 activity state. PE induced a switch in 4EBP1 phosphorylation by increasing mTORC1-dependent phosphorylation at Thr36/Thr45, but not Thr69. Further, PE induced a novel mTORC1-independent, but MEK-ERK-dependent, pathway driving 4EBP1 phosphorylation at Ser64 in both isolated cardiomyocytes and . Ribosome biogenesis was also observed within hours upon hypertrophic stimulation, while the mTORC1-S6K-eEF2K-eEF2 pathway was not found to be a major driver of protein translation.
Protein synthesis is heterogeneous across cardiomyocytes driven by heterogeneous mTORC1 activity. MEK-ERK signaling directly controls 4EBP1 phosphorylation to augment translation during cardiac hypertrophy and challenges the canonical model of translation initiation.
心脏肥大可使有丝分裂后的心肌细胞满足增加的血流动力学需求,但可能使心脏易发生不良临床结局。尽管其在心脏适应性变化中起核心作用,但驱动心脏肥大的翻译控制机制仍知之甚少。在本研究中,我们阐明了在稳态和肥大生长过程中起作用的各种翻译控制机制的相对贡献。
采用免疫荧光和单个心肌细胞蛋白质合成测定相结合的方法,剖析成年大鼠分离心肌细胞在基础和肥大条件下翻译控制的单细胞机制。在明显心脏生长之前,在急性肥大苯肾上腺素(PE)刺激的小鼠模型中检查翻译控制机制。
我们观察到翻译的主要调节因子mTORC1在心肌细胞中的活性在基础和肥大条件下均存在显著异质性。异质性mTORC1活性驱动异质性蛋白质合成,在基线条件下,翻译主要通过经典的mTORC1依赖性4EBP1在苏氨酸36/苏氨酸45/苏氨酸69位点的磷酸化来控制。肥大性PE刺激使更多心肌细胞进入高mTORC1活性状态。PE通过增加mTORC1依赖性苏氨酸36/苏氨酸45位点的磷酸化,但不增加苏氨酸69位点的磷酸化,诱导4EBP1磷酸化的转换。此外,PE在分离的心肌细胞和整体中诱导了一条新的不依赖mTORC1但依赖MEK-ERK的途径,驱动4EBP1在丝氨酸64位点的磷酸化。肥大刺激后数小时内也观察到核糖体生物合成,而mTORC1-S6K-eEF2K-eEF2途径未被发现是蛋白质翻译的主要驱动因素。
蛋白质合成在心肌细胞中是异质性的,由异质性mTORC1活性驱动。MEK-ERK信号直接控制4EBP1磷酸化,以增强心脏肥大期间的翻译,并挑战翻译起始的经典模型。