Suppr超能文献

骨肉瘤中与转移相关潜在基因的鉴定:一项综合生物信息学分析

Identification of potential genes associated with metastasis in osteosarcoma: an integrated bioinformatics analysis.

作者信息

Wiratnaya I G E, Ismail M D, Hasan F

机构信息

Department of Orthopaedic and Traumatology, Faculty of Medicine, Udayana University, Jl. Pulau Nias, Denpasar, 80113, Bali, Indonesia.

Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.

出版信息

Musculoskelet Surg. 2025 Feb 25. doi: 10.1007/s12306-025-00891-z.

Abstract

This study aims to identify the potential genes, pathways, and tumor immune microenvironment that might be involved in the metastasis process of osteosarcoma (OS). The GEO2R tool was deployed to screen two datasets obtained from the Gene Expression Omnibus (GEO) database (GSE87624 and GSE85537). Integrated bioinformatic analyses were then performed to investigate Gene Ontology, potential pathways, protein-protein network interaction, core hub genes, genetic alterations, and immune cell infiltration. The hub gene expression levels were validated utilizing another dataset (GSE14329) and patient prognosis was validated using the GDC-TARGET OS dataset. Our analysis identified 263 differentially expressed genes (DEGs), predominantly associated with the PI3K-AKT signaling pathway. Analysis using Cytoscape based on DEGs revealed five validated core hub genes including COL6A1, MMP2, POSTN, TAGLN, and THY1. Additionally, TAGLN and THY1 have a significant association (P = 0.008) (P = 0.03) with unfavorable outcomes in osteosarcoma patients. This study unveiled that TAGLN and THY1 were associated with metastasis and poor prognosis in OS.

摘要

本研究旨在确定可能参与骨肉瘤(OS)转移过程的潜在基因、信号通路和肿瘤免疫微环境。利用GEO2R工具筛选从基因表达综合数据库(GEO)获得的两个数据集(GSE87624和GSE85537)。随后进行综合生物信息学分析,以研究基因本体、潜在信号通路、蛋白质-蛋白质网络相互作用、核心枢纽基因、基因改变和免疫细胞浸润。利用另一个数据集(GSE14329)验证枢纽基因表达水平,并使用GDC-TARGET OS数据集验证患者预后。我们的分析确定了263个差异表达基因(DEG),主要与PI3K-AKT信号通路相关。基于DEG使用Cytoscape进行分析,揭示了五个经过验证的核心枢纽基因,包括COL6A1、MMP2、POSTN、TAGLN和THY1。此外,TAGLN和THY1与骨肉瘤患者的不良预后具有显著相关性(P = 0.008)(P = 0.03)。本研究表明,TAGLN和THY1与OS的转移和不良预后相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验