Suppr超能文献

前体药物临床试验的当前趋势。

Current Trends in Clinical Trials of Prodrugs.

作者信息

Boreski Diogo, Schmid Valentine Fabienne, Bosquesi Priscila Longhin, Dos Santos Jean Leandro, Scarim Cauê Benito, Reshetnikov Viktor, Chin Chung Man

机构信息

Laboratory for Drug Design (LAPDESF), School of Pharmaceutical Sciences, University of São Paulo State (UNESP), Araraquara 14800-903, Brazil.

Departement Pharmazeutische Wissenschaften, Philosophisch-Naturwissenschaftliche Fakultät, Universität Basel, 4003 Basel, Switzerland.

出版信息

Pharmaceuticals (Basel). 2025 Feb 4;18(2):210. doi: 10.3390/ph18020210.

Abstract

The development of new drugs is a lengthy and complex process regarding its conception and ideation, passing through in silico studies, synthesis, in vivo studies, clinical trials, approval, and commercialization, with an exceptionally low success rate. The lack of efficacy, safety, and suboptimal pharmacokinetic parameters are commonly identified as significant challenges in the discovery of new drugs. To help address these challenges, various approaches have been explored in medicinal chemistry, including the use of prodrug strategies. As a well-established approach, prodrug design remains the best option for improving physicochemical properties, reducing toxicity, and increasing selectivity, all while minimizing costs and saving on biological studies. This review article aims to analyze the current advances using the prodrug approach that has allowed the advance of drug candidates to clinical trials in the last 10 years. The approaches presented here aim to inspire further molecular optimization processes and highlight the potential of this strategy to facilitate the advancement of new compounds to clinical study phases.

摘要

新药研发是一个漫长而复杂的过程,从构思到概念形成,要经过计算机模拟研究、合成、体内研究、临床试验、审批和商业化等阶段,成功率极低。疗效不佳、安全性问题以及不理想的药代动力学参数通常被认为是新药研发中的重大挑战。为了应对这些挑战,药物化学领域探索了各种方法,包括前药策略的应用。作为一种成熟的方法,前药设计仍然是改善物理化学性质、降低毒性、提高选择性的最佳选择,同时还能将成本降至最低并节省生物学研究费用。这篇综述文章旨在分析过去10年中使用前药方法取得的最新进展,这些进展使候选药物得以推进到临床试验阶段。这里介绍的方法旨在激发进一步的分子优化过程,并突出该策略在促进新化合物进入临床研究阶段方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b1a/11859331/315900dba967/pharmaceuticals-18-00210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验