Suppr超能文献

跨空间转录组学平台的基因表达联合插补与反卷积

Joint imputation and deconvolution of gene expression across spatial transcriptomics platforms.

作者信息

Zheng Hongyu, Sarkar Hirak, Raphael Benjamin J

机构信息

Department of Computer Science, Princeton University, Princeton, NJ, USA.

Ludwig Cancer Institute, Princeton Branch, Princeton University, Princeton, NJ, USA.

出版信息

bioRxiv. 2025 Feb 19:2025.02.17.638195. doi: 10.1101/2025.02.17.638195.

Abstract

Spatially resolved transcriptomics (SRT) technologies measure gene expression across thousands of spatial locations within a tissue slice. Multiple SRT technologies are currently available and others are in active development with each technology having varying spatial resolution (subcellular, single-cell, or multicellular regions), gene coverage (targeted vs. whole-transcriptome), and sequencing depth per location. For example, the widely used 10x Genomics Visium platform measures whole transcriptomes from multiple-cell-sized spots, while the 10x Genomics Xenium platform measures a few hundred genes at subcellular resolution. A number of studies apply multiple SRT technologies to slices that originate from the same biological tissue. Integration of data from different SRT technologies can overcome limitations of the individual technologies enabling the imputation of expression from unmeasured genes in targeted technologies and/or the deconvolution of ad-mixed expression from technologies with lower spatial resolution. We introduce Spatial Integration for Imputation and Deconvolution (SIID), an algorithm to reconstruct a latent spatial gene expression matrix from a pair of observations from different SRT technologies. SIID leverages a spatial alignment and uses a joint non-negative factorization model to accurately impute missing gene expression and infer gene expression signatures of cell types from ad-mixed SRT data. In simulations involving paired SRT datasets from different technologies (e.g., Xenium and Visium), SIID shows superior performance in reconstructing spot-to-cell-type assignments, recovering cell-type-specific gene expression, and imputing missing data compared to contemporary tools. When applied to real-world 10x Xenium-Visium pairs from human breast and colon cancer tissues, SIID achieves highest performance in imputing holdout gene expression. A PyTorch implementation of SIID is available at https://github.com/raphael-group/siid.

摘要

空间分辨转录组学(SRT)技术可测量组织切片内数千个空间位置的基因表达。目前有多种SRT技术可供使用,其他技术也在积极研发中,每种技术的空间分辨率(亚细胞、单细胞或多细胞区域)、基因覆盖范围(靶向与全转录组)以及每个位置的测序深度各不相同。例如,广泛使用的10x Genomics Visium平台可从多个细胞大小的斑点中测量全转录组,而10x Genomics Xenium平台可在亚细胞分辨率下测量数百个基因。许多研究将多种SRT技术应用于源自同一生物组织的切片。整合来自不同SRT技术的数据可以克服个别技术的局限性,从而在靶向技术中估算未测量基因的表达,和/或从空间分辨率较低的技术中对混合表达进行反卷积。我们引入了用于估算和反卷积的空间整合(SIID)算法,该算法可从不同SRT技术的一对观测值中重建潜在的空间基因表达矩阵。SIID利用空间比对,并使用联合非负因式分解模型来准确估算缺失的基因表达,并从混合的SRT数据中推断细胞类型的基因表达特征。在涉及来自不同技术(例如Xenium和Visium)的配对SRT数据集的模拟中,与当代工具相比,SIID在重建斑点到细胞类型的分配、恢复细胞类型特异性基因表达以及估算缺失数据方面表现出卓越的性能。当应用于来自人类乳腺癌和结肠癌组织的真实世界10x Xenium-Visium配对数据时,SIID在估算保留基因表达方面表现出最高的性能。SIID的PyTorch实现可在https://github.com/raphael-group/siid上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f581/11870578/ffe63c4c324e/nihpp-2025.02.17.638195v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验