Suppr超能文献

硅酸铜纳米颗粒介导黄芪甲苷递送通过重塑关节软骨微环境治疗骨关节炎

Copper silicate nanoparticle-mediated delivery of astragaloside-IV for osteoarthritis treatment by remodeling the articular cartilage microenvironment.

作者信息

Yang Jianfeng, Jiang Hongyi, Wu Congcong, Lin Yuzhe, Tan Guancan, Zhan Juannan, Han Lijiang, Zhu Yiting, Shang Ping, Liu Liangle, Liu Haixiao

机构信息

Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.

Department of Rehabilitation, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.

出版信息

J Control Release. 2025 May 10;381:113583. doi: 10.1016/j.jconrel.2025.113583. Epub 2025 Mar 1.

Abstract

With the increasing global aging population, osteoarthritis (OA) has emerged as a major public health concern. OA pathogenesis is characterized by a complex interplay among inflammatory cytokines, reactive oxygen species, and extracellular matrix components, leading to cartilage degradation. Astragaloside-IV (AS-IV), a natural antioxidant, has shown promise in alleviating OA symptoms but is limited by poor bioavailability and ineffective cartilage drug delivery. To address these challenges, we aimed to develop a drug delivery system using copper silicate nanoparticles modified with polyethylene glycol and loaded with AS-IV (referred to as CSP@AS-IV). This system uses mesoporous silica nanoparticles with a hybrid metal framework to enhance drug release and efficacy. CSP@AS-IV degrades in the acidic OA microenvironment, releasing copper ions (Cu) and AS-IV, which synergistically exert antioxidant, antibacterial, anti-inflammatory, and chondroprotective effects. Both in vitro and in vivo rat model experiments demonstrated that CSP@AS-IV significantly alleviated joint inflammation, downregulated inflammatory marker expression, and promoted cartilage repair. These findings underscore that CSP@AS-IV offers considerable clinical potential for enhancing OA treatment outcomes.

摘要

随着全球老龄化人口的增加,骨关节炎(OA)已成为一个主要的公共卫生问题。OA的发病机制以炎症细胞因子、活性氧和细胞外基质成分之间的复杂相互作用为特征,导致软骨降解。黄芪甲苷-IV(AS-IV)是一种天然抗氧化剂,已显示出缓解OA症状的潜力,但受生物利用度差和软骨药物递送无效的限制。为应对这些挑战,我们旨在开发一种药物递送系统,该系统使用用聚乙二醇修饰并负载AS-IV的硅酸铜纳米颗粒(称为CSP@AS-IV)。该系统使用具有混合金属框架的介孔二氧化硅纳米颗粒来增强药物释放和疗效。CSP@AS-IV在酸性OA微环境中降解,释放铜离子(Cu)和AS-IV,它们协同发挥抗氧化、抗菌、抗炎和软骨保护作用。体外和体内大鼠模型实验均表明,CSP@AS-IV显著减轻关节炎症,下调炎症标志物表达,并促进软骨修复。这些发现强调,CSP@AS-IV在改善OA治疗效果方面具有相当大的临床潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验