Suppr超能文献

脂质纳米颗粒与聚乙二醇:免疫检查点阻断的时间框架可通过调整纳米颗粒的细胞摄取速率来控制。

Lipid Nanoparticles and PEG: Time Frame of Immune Checkpoint Blockade Can Be Controlled by Adjusting the Rate of Cellular Uptake of Nanoparticles.

作者信息

Choi Andrew S, Moon Taylor J, Bhalotia Anubhuti, Rajan Aarthi, Ogunnaike Laolu, Hutchinson Diarmuid W, Hwang Inga, Gokhale Aaditya, Kim Justin N, Ma Timothy, Karathanasis Efstathios

机构信息

Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States.

Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States.

出版信息

Mol Pharm. 2025 Apr 7;22(4):1859-1868. doi: 10.1021/acs.molpharmaceut.4c01039. Epub 2025 Mar 4.

Abstract

The engineerability of lipid nanoparticles (LNPs) and their ability to deliver nucleic acids make LNPs attractive tools for cancer immunotherapy. LNP-based gene delivery can be employed for various approaches in cancer immunotherapy, including encoding tumor-associated antigens and silencing of negative immune checkpoint proteins. For example, LNPs carrying small interfering RNAs can offer several advantages, including sustained and durable inhibition of an immune checkpoint protein. Due to their tunable design, modifying the lipid composition of LNPs can regulate the rate of their uptake by immune cells and the rate of gene silencing. Controlling the kinetics of LNP uptake provides additional flexibility and strategies to generate appropriate immunomodulation in the tumor microenvironment. Here, we evaluated the effects of polyethylene glycol (PEG) content ranging from 0.5 to 6 mol % on the cellular uptake of LNPs by immune cells and gene silencing of PD-L1 after intratumoral administration. We evaluated the cellular uptake and PD-L1 blockade in vitro in cell studies and in vivo using the YUMM1.7 melanoma tumor model. Cell studies showed that the rate of cell uptake was inversely correlated to an increasing mol % of PEG in a linear relationship. In the in vivo studies, 0.5% PEG LNP initiated an immediate effect in the tumor with a significant decrease in the PD-L1 expression of immune cells observed within 24 h. In comparison, the gene silencing effect of 6% PEG LNP was delayed, with a significant decrease of PD-L1 expression in immune cell subsets being observed 72 h after administration. Notably, performance of the 6% PEG LNP at 72 h was comparable to that of the 0.5% PEG LNP at 24 h. Overall, this study suggests that PEG modifications and intratumoral administration of LNPs can be a promising strategy for an effective antitumor immune response.

摘要

脂质纳米颗粒(LNPs)的可工程性及其递送核酸的能力,使LNPs成为癌症免疫治疗中具有吸引力的工具。基于LNP的基因递送可用于癌症免疫治疗的各种方法,包括编码肿瘤相关抗原和沉默负性免疫检查点蛋白。例如,携带小干扰RNA的LNPs可提供多种优势,包括对免疫检查点蛋白的持续抑制。由于其可调节的设计,改变LNPs的脂质组成可调节免疫细胞对其摄取的速率以及基因沉默的速率。控制LNP摄取的动力学为在肿瘤微环境中产生适当的免疫调节提供了额外的灵活性和策略。在此,我们评估了聚乙二醇(PEG)含量在0.5至6 mol%范围内对免疫细胞摄取LNPs以及瘤内给药后PD-L1基因沉默的影响。我们在细胞研究中以及使用YUMM1.7黑色素瘤肿瘤模型在体内评估了细胞摄取和PD-L1阻断情况。细胞研究表明,细胞摄取速率与PEG的mol%增加呈线性反比关系。在体内研究中,0.5% PEG的LNP在肿瘤中引发了即时效应,在24小时内观察到免疫细胞的PD-L1表达显著降低。相比之下,6% PEG的LNP的基因沉默效应延迟,在给药后72小时观察到免疫细胞亚群中的PD-L1表达显著降低。值得注意的是,6% PEG的LNP在72小时时的表现与0.5% PEG的LNP在24小时时相当。总体而言,这项研究表明,PEG修饰和LNPs的瘤内给药可能是一种有效的抗肿瘤免疫反应的有前景的策略。

相似文献

2
Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy.
Adv Sci (Weinh). 2024 Jun;11(22):e2309917. doi: 10.1002/advs.202309917. Epub 2024 Mar 23.
6
Liposome Nanomedicine Based on Tumor Cell Lysate Mitigates the Progression of Lynch Syndrome-Associated Colon Cancer.
ACS Biomater Sci Eng. 2024 May 13;10(5):3136-3147. doi: 10.1021/acsbiomaterials.3c01531. Epub 2024 Apr 25.
8
Improved Stability of siRNA-Loaded Lipid Nanoparticles Prepared with a PEG-Monoacyl Fatty Acid Facilitates Ligand-Mediated siRNA Delivery.
Mol Pharm. 2020 Apr 6;17(4):1397-1404. doi: 10.1021/acs.molpharmaceut.0c00087. Epub 2020 Mar 2.

本文引用的文献

1
Nanoparticles targeting immune checkpoint protein VISTA induce potent antitumor immunity.
J Immunother Cancer. 2024 Aug 28;12(8):e008977. doi: 10.1136/jitc-2024-008977.
2
Localized intratumoral delivery of immunomodulators for oral cancer and oral potentially malignant disorders.
Oral Oncol. 2024 Nov;158:106986. doi: 10.1016/j.oraloncology.2024.106986. Epub 2024 Aug 12.
3
Intratumoral Injection of Immunotherapeutics: State of the Art and Future Directions.
Radiology. 2024 Jul;312(1):e232654. doi: 10.1148/radiol.232654.
4
Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis.
Int J Biol Macromol. 2024 Oct;277(Pt 1):133984. doi: 10.1016/j.ijbiomac.2024.133984. Epub 2024 Jul 23.
5
Current and emerging intralesional immunotherapies in cutaneous oncology.
J Am Acad Dermatol. 2024 Nov;91(5):910-921. doi: 10.1016/j.jaad.2024.05.095. Epub 2024 Jun 26.
6
Intratumoral delivery of immunotherapy to treat breast cancer: current development in clinical and preclinical studies.
Front Immunol. 2024 May 13;15:1385484. doi: 10.3389/fimmu.2024.1385484. eCollection 2024.
7
Intratumoral therapies in head and neck squamous cell carcinoma: A systematic review and future perspectives.
Cancer Treat Rev. 2024 Jun;127:102746. doi: 10.1016/j.ctrv.2024.102746. Epub 2024 Apr 27.
9
Can targeted nanoparticles distinguish cancer metastasis from inflammation?
J Control Release. 2023 Oct;362:812-819. doi: 10.1016/j.jconrel.2023.03.054. Epub 2023 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验