Suppr超能文献

使用预训练的BERT深度学习模型的文本数据实现人工智能驱动的医疗保健系统的演进。

Evolution of AI enabled healthcare systems using textual data with a pretrained BERT deep learning model.

作者信息

Wang Yi Jie, Choo Wei Chong, Ng Keng Yap, Bi Ran, Wang Peng Wei

机构信息

School of Business and Economics, Universiti Putra Malaysia, Seri Kembangan, Malaysia.

Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia, Seri Kembangan, Malaysia.

出版信息

Sci Rep. 2025 Mar 4;15(1):7540. doi: 10.1038/s41598-025-91622-8.

Abstract

In the rapidly evolving field of healthcare, Artificial Intelligence (AI) is increasingly driving the promotion of the transformation of traditional healthcare and improving medical diagnostic decisions. The overall goal is to uncover emerging trends and potential future paths of AI in healthcare by applying text mining to collect scientific papers and patent information. This study, using advanced text mining and multiple deep learning algorithms, utilized the Web of Science for scientific papers (1587) and the Derwent innovations index for patents (1314) from 2018 to 2022 to study future trends of emerging AI in healthcare. A novel self-supervised text mining approach, leveraging bidirectional encoder representations from transformers (BERT), is introduced to explore AI trends in healthcare. The findings point out the market trends of the Internet of Things, data security and image processing. This study not only reveals current research hotspots and technological trends in AI for healthcare but also proposes an advanced research method. Moreover, by analysing patent data, this study provides an empirical basis for exploring the commercialisation of AI technology, indicating the potential transformation directions for future healthcare services. Early technology trend analysis relied heavily on expert judgment. This study is the first to introduce a deep learning self-supervised model to the field of AI in healthcare, effectively improving the accuracy and efficiency of the analysis. These findings provide valuable guidance for researchers, policymakers and industry professionals, enabling more informed decisions.

摘要

在快速发展的医疗保健领域,人工智能(AI)正日益推动传统医疗保健的转型,并改善医疗诊断决策。总体目标是通过应用文本挖掘来收集科学论文和专利信息,从而揭示人工智能在医疗保健领域的新兴趋势和未来潜在路径。本研究运用先进的文本挖掘和多种深度学习算法,利用科学网获取2018年至2022年的科学论文(1587篇)以及德温特创新索引获取专利(1314项),以研究新兴人工智能在医疗保健领域的未来趋势。引入了一种新颖的自监督文本挖掘方法,利用来自变换器的双向编码器表征(BERT)来探索医疗保健领域的人工智能趋势。研究结果指出了物联网、数据安全和图像处理的市场趋势。本研究不仅揭示了人工智能在医疗保健领域的当前研究热点和技术趋势,还提出了一种先进的研究方法。此外,通过分析专利数据,本研究为探索人工智能技术的商业化提供了实证依据,指明了未来医疗保健服务的潜在转型方向。早期的技术趋势分析严重依赖专家判断。本研究首次将深度学习自监督模型引入医疗保健领域的人工智能研究,有效提高了分析的准确性和效率。这些发现为研究人员、政策制定者和行业专业人士提供了有价值的指导,使他们能够做出更明智的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acda/11880528/7cc3b95ceb0a/41598_2025_91622_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验