Berlind Joshua E, Lai Jesse D, Lie Cecilia, Vicente Jokabeth, Lam Kelsey, Guo Sheron, Chang Jonathan, Yu Violeta, Ichida Justin K
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA.
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA; Department of Neuroscience, Amgen Inc., Cambridge, MA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA.
Neuron. 2025 Apr 16;113(8):1169-1189.e7. doi: 10.1016/j.neuron.2025.02.001. Epub 2025 Mar 5.
Excitotoxicity is a major pathologic mechanism in patients with tauopathy and other neurodegenerative diseases. However, the key neurotoxic drivers and the most effective strategies for mitigating these degenerative processes are unclear. Here, we show that glutamate treatment of induced pluripotent stem cell (iPSC)-derived cerebral organoids induces tau oligomerization and neurodegeneration and that these phenotypes are enhanced in organoids derived from tauopathy patients. Using a genome-wide CRISPR interference (CRISPRi) screen, we find that the suppression of KCTD20 potently ameliorates tau pathology and neurodegeneration in glutamate-treated organoids and mice, as well as in transgenic mice overexpressing mutant human tau. KCTD20 suppression reduces oligomeric tau and improves neuron survival by activating lysosomal exocytosis, which clears pathological tau. Our results show that glutamate signaling can induce neuronal tau pathology and identify KCTD20 suppression and lysosomal exocytosis as effective strategies for clearing neurotoxic tau species.
兴奋毒性是tau蛋白病和其他神经退行性疾病患者的主要病理机制。然而,关键的神经毒性驱动因素以及减轻这些退行性过程的最有效策略尚不清楚。在此,我们表明,用谷氨酸处理诱导多能干细胞(iPSC)来源的脑类器官会诱导tau蛋白寡聚化和神经退行性变,并且这些表型在tau蛋白病患者来源的类器官中会增强。通过全基因组CRISPR干扰(CRISPRi)筛选,我们发现抑制KCTD20可有效改善谷氨酸处理的类器官和小鼠以及过表达突变型人tau蛋白的转基因小鼠中的tau蛋白病理和神经退行性变。抑制KCTD20可减少tau蛋白寡聚物,并通过激活溶酶体胞吐作用来改善神经元存活,从而清除病理性tau蛋白。我们的结果表明,谷氨酸信号传导可诱导神经元tau蛋白病理,并确定抑制KCTD20和溶酶体胞吐作用是清除神经毒性tau蛋白的有效策略。