Suppr超能文献

使用低成本脑电图设备进行压力监测:一项系统的文献综述。

Stress monitoring using low-cost electroencephalogram devices: A systematic literature review.

作者信息

Vos Gideon, Ebrahimpour Maryam, van Eijk Liza, Sarnyai Zoltan, Rahimi Azghadi Mostafa

机构信息

College of Science and Engineering, James Cook University, James Cook Dr, Townsville, 4811, QLD, Australia.

College of Health Care Sciences, James Cook University, James Cook Dr, Townsville, 4811, QLD, Australia.

出版信息

Int J Med Inform. 2025 Jun;198:105859. doi: 10.1016/j.ijmedinf.2025.105859. Epub 2025 Mar 6.

Abstract

INTRODUCTION

The use of low-cost, consumer-grade wearable health monitoring devices has become increasingly prevalent in mental health research, including stress studies. While cortisol response magnitude remains the gold standard for stress assessment, an expanding body of research employs low-cost EEG devices as primary tools for recording biomarker data, often combined with wrist and ring-based wearables. However, the technical variability among low-cost EEG devices, particularly in sensor count and placement according to the 10-20 Electrode Placement System, poses challenges for reproducibility in study outcomes.

OBJECTIVE

This review aims to provide an overview of the growing application of low-cost EEG devices and machine learning techniques for assessing brain function, with a focus on stress detection. It also highlights the strengths and weaknesses of various machine learning methods commonly used in stress research, and evaluates the reproducibility of reported findings along with sensor count and placement importance.

METHODS

A comprehensive review was conducted of published studies utilizing EEG devices for stress detection and their associated machine learning approaches. Searches were performed across databases including Scopus, Google Scholar, ScienceDirect, Nature, and PubMed, yielding 69 relevant articles for analysis. The selected studies were synthesized into four thematic categories: stress assessment using EEG, low-cost EEG devices, datasets for EEG-based stress measurement, and machine learning techniques for EEG-based stress analysis. For machine learning-focused studies, validation and reproducibility methods were critically assessed. Study quality was evaluated and scored using the IJMEDI checklist.

RESULTS

The review identified several studies employing low-cost EEG devices to monitor brain activity during stress and relaxation phases, with many reporting high predictive accuracy using various machine learning validation techniques. However, only 54% of the studies included health screening prior to experimentation, and 58% were categorized as low-powered due to limited sample sizes. Additionally, few studies validated their results using an independent validation set or cortisol response as a correlating biomarker and there was a lack of consensus on data pre-processing and sensor placement as a key contributor to improving model generalization and accuracy.

CONCLUSION

Low-cost consumer-grade wearable devices, including EEG and wrist-based monitors, are increasingly utilized in stress-related research, offering promising avenues for non-invasive biomarker monitoring. However, significant gaps remain in standardizing EEG signal processing and sensor placement, both of which are critical for enhancing model generalization and accuracy. Furthermore, the limited use of independent validation sets and cortisol response as correlating biomarkers highlights the need for more robust validation methodologies. Future research should focus on addressing these limitations and establishing consensus on data pre-processing techniques and sensor configurations to improve the reliability and reproducibility of findings in this growing field.

摘要

引言

在心理健康研究(包括压力研究)中,使用低成本的消费级可穿戴健康监测设备已变得越来越普遍。虽然皮质醇反应幅度仍然是压力评估的金标准,但越来越多的研究采用低成本脑电图(EEG)设备作为记录生物标志物数据的主要工具,通常还会结合基于手腕和戒指的可穿戴设备。然而,低成本EEG设备之间的技术差异,特别是在根据10 - 20电极放置系统的传感器数量和放置方式上,给研究结果的可重复性带来了挑战。

目的

本综述旨在概述低成本EEG设备和机器学习技术在评估脑功能(重点是压力检测)方面日益增长的应用。它还强调了压力研究中常用的各种机器学习方法的优缺点,并评估了报告结果的可重复性以及传感器数量和放置的重要性。

方法

对利用EEG设备进行压力检测及其相关机器学习方法的已发表研究进行了全面综述。在包括Scopus、谷歌学术、ScienceDirect、《自然》和PubMed在内的数据库中进行了搜索,得到69篇相关文章进行分析。所选研究被综合为四个主题类别:使用EEG进行压力评估、低成本EEG设备、基于EEG的压力测量数据集以及基于EEG的压力分析的机器学习技术。对于以机器学习为重点的研究,对验证和可重复性方法进行了严格评估。使用IJMEDI清单对研究质量进行评估和评分。

结果

该综述确定了几项使用低成本EEG设备在压力和放松阶段监测大脑活动的研究,许多研究报告使用各种机器学习验证技术具有较高的预测准确性。然而,只有54%的研究在实验前进行了健康筛查,并且由于样本量有限,58%的研究被归类为低效能研究。此外,很少有研究使用独立验证集或皮质醇反应作为相关生物标志物来验证其结果,并且在数据预处理和传感器放置作为提高模型泛化和准确性的关键因素方面缺乏共识。

结论

低成本的消费级可穿戴设备,包括EEG和基于手腕的监测器,越来越多地用于与压力相关的研究,为无创生物标志物监测提供了有前景的途径。然而,在标准化EEG信号处理和传感器放置方面仍然存在重大差距,这两者对于提高模型泛化和准确性都至关重要。此外,独立验证集和皮质醇反应作为相关生物标志物的使用有限,凸显了对更强大验证方法的需求。未来的研究应专注于解决这些限制,并就数据预处理技术和传感器配置达成共识,以提高这一不断发展领域中研究结果的可靠性和可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验