Suppr超能文献

睡眠期间用于记忆和认知的多区域处理。

Multi-region processing during sleep for memory and cognition.

作者信息

E Said Salma, Miyamoto Daisuke

机构信息

Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.

Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

出版信息

Proc Jpn Acad Ser B Phys Biol Sci. 2025;101(3):107-128. doi: 10.2183/pjab.101.008.

Abstract

Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.

摘要

在过去几十年里,人们对睡眠的理解已发展为一种基本的生理机制,它是处理不同类型记忆所不可或缺的,而不仅仅是一种被动的大脑状态。周期性睡眠亚状态,即快速眼动(REM)睡眠和非快速眼动(NREM)睡眠,呈现出独特但互补的振荡模式,这些模式在对学习、记忆巩固和记忆检索至关重要的不同脑区之间形成区域间网络。成像和操纵方法的技术进步使人们对包括全脑、突触和分子水平在内的多尺度记忆形成过程有了更深入的理解。本综述提供了简短的背景信息,概述了在理解睡眠及其亚状态在人类和啮齿动物记忆处理中的作用方面的当前研究状况和未来展望,重点关注跨区域脑通信、振荡耦合、离线再激活和印迹研究。此外,我们简要讨论了睡眠如何有助于其他高阶认知功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d25c/12321501/a387557fa890/pjab-101-107-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验