Suppr超能文献

重度抑郁症和双相情感障碍患者静息态脑活动的改变:局部一致性分析。

Altered resting-state brain activity in patients with major depression disorder and bipolar disorder: A regional homogeneity analysis.

作者信息

Han Weijian, Su Yousong, Wang Xiangwen, Yang Tao, Zhao Guoqing, Mao Ruizhi, Zhu Na, Zhou Rubai, Wang Xing, Wang Yun, Peng Daihui, Wang Zuowei, Fang Yiru, Chen Jun, Sun Ping

机构信息

Qingdao Mental Health Center, Qingdao 266034, Shandong, China.

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China.

出版信息

J Affect Disord. 2025 Jun 15;379:313-322. doi: 10.1016/j.jad.2025.03.057. Epub 2025 Mar 11.

Abstract

BACKGROUND

Major Depressive Disorder (MDD) and Bipolar Disorder (BD) exhibit overlapping depressive symptoms, complicating their differentiation in clinical practice. Traditional neuroimaging studies have focused on specific regions of interest, but few have employed whole-brain analyses like regional homogeneity (ReHo). This study aims to differentiate MDD from BD by identifying key brain regions with abnormal ReHo and using advanced machine learning techniques to improve diagnostic accuracy.

METHODS

A total of 63 BD patients, 65 MDD patients, and 70 healthy controls were recruited from the Shanghai Mental Health Center. Resting-state functional MRI (rs-fMRI) was used to analyze ReHo across the brain. We applied Support Vector Machine (SVM) and SVM-Recursive Feature Elimination (SVM-RFE), a robust machine learning model known for its high precision in feature selection and classification, to identify critical brain regions that could serve as biomarkers for distinguishing BD from MDD. SVM-RFE allows for the recursive removal of non-informative features, enhancing the model's ability to accurately classify patients. Correlations between ReHo values and clinical scores were also evaluated.

RESULTS

ReHo analysis revealed significant differences in several brain regions. The study results revealed that, compared to healthy controls, both BD and MDD patients exhibited reduced ReHo in the superior parietal gyrus. Additionally, MDD patients showed decreased ReHo values in the Right Lenticular nucleus, putamen (PUT.R), Right Angular gyrus (ANG.R), and Left Superior occipital gyrus (SOG.L). Compared to the MDD group, BD patients exhibited increased ReHo values in the Left Inferior occipital gyrus (IOG.L). In BD patients only, the reduction in ReHo values in the right superior parietal gyrus and the right angular gyrus was positively correlated with Hamilton Depression Scale (HAMD) scores. SVM-RFE identified the IOG.L, SOG.L, and PUT.R as the most critical features, achieving an area under the curve (AUC) of 0.872, with high sensitivity and specificity in distinguishing BD from MDD.

CONCLUSION

This study demonstrates that BD and MDD patients exhibit distinct patterns of regional brain activity, particularly in the occipital and parietal regions. The combination of ReHo analysis and SVM-RFE provides a powerful approach for identifying potential biomarkers, with the left inferior occipital gyrus, left superior occipital gyrus, and right putamen emerging as key differentiating regions. These findings offer valuable insights for improving the diagnostic accuracy between BD and MDD, contributing to more targeted treatment strategies.

摘要

背景

重度抑郁症(MDD)和双相情感障碍(BD)表现出重叠的抑郁症状,这使得它们在临床实践中的鉴别变得复杂。传统的神经影像学研究主要集中在特定的感兴趣区域,但很少采用像局部一致性(ReHo)这样的全脑分析方法。本研究旨在通过识别ReHo异常的关键脑区,并使用先进的机器学习技术来提高诊断准确性,从而区分MDD和BD。

方法

从上海精神卫生中心招募了63名BD患者、65名MDD患者和70名健康对照者。采用静息态功能磁共振成像(rs-fMRI)分析全脑的ReHo。我们应用支持向量机(SVM)和支持向量机递归特征消除(SVM-RFE),这是一种以其在特征选择和分类方面的高精度而闻名的强大机器学习模型,来识别可作为区分BD和MDD生物标志物的关键脑区。SVM-RFE允许递归去除无信息特征,增强模型对患者进行准确分类的能力。还评估了ReHo值与临床评分之间的相关性。

结果

ReHo分析显示在几个脑区存在显著差异。研究结果表明,与健康对照相比,BD和MDD患者在上顶叶回的ReHo均降低。此外,MDD患者在右侧豆状核、壳核(PUT.R)、右侧角回(ANG.R)和左侧枕上回(SOG.L)的ReHo值降低。与MDD组相比,BD患者在左侧枕下回(IOG.L)的ReHo值升高。仅在BD患者中,右上顶叶回和右角回的ReHo值降低与汉密尔顿抑郁量表(HAMD)评分呈正相关。SVM-RFE将IOG.L、SOG.L和PUT.R确定为最关键的特征,曲线下面积(AUC)为0.872,在区分BD和MDD方面具有高敏感性和特异性。

结论

本研究表明,BD和MDD患者表现出不同的脑区活动模式,特别是在枕叶和顶叶区域。ReHo分析和SVM-RFE的结合为识别潜在生物标志物提供了一种强大的方法,左侧枕下回、左侧枕上回和右侧壳核成为关键的区分区域。这些发现为提高BD和MDD之间的诊断准确性提供了有价值的见解,有助于制定更具针对性的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验