Suppr超能文献

弥合自动化差距:用于双染宫颈癌筛查分诊的强大人工智能

Closing the Automation Gap: Robust AI for Dual-Stain Cervical Cancer Screening Triage.

作者信息

Lahrmann Bernd, Keil Andreas, Ruiz Felipe Miranda, Clarke Megan A, Egemen Didem, Grewal Kiranjit K, Grabe Finley P, Bartels Liam, Krauthoff Alexandra, Ströbel Philipp, Risley Carolann, Reaves Sydney, Fuller Laurie A, Kinney Walter, Poitras Nancy, Goldhoff Patricia E, Suh-Burgmann Betty, Lorey Thomas S, Wentzensen Nicolas, Grabe Niels

机构信息

Steinbeis Center for Medical Systems Biology, Heidelberg, Germany.

Institute of Pathology, University Medicine Goettingen, Goettingen, Germany.

出版信息

Res Sq. 2025 Mar 4:rs.3.rs-5985837. doi: 10.21203/rs.3.rs-5985837/v1.

Abstract

Dual-stain cytology, using p16 and Ki67, is superior to conventional PAP cytology for triage of HPV-positive test results in cervical cancer screening. Its AI-based evaluation can remove subjectivity, improve performance and facilitate implementation. Using 5,722 dual-stain slides from population-based screening cohorts, we developed and validated Cytoreader-V2. In the SurePath Kaiser Implementation Study, Cytoreader-V2 achieved 87.2%/57.8% (sensitivity/specificity) compared to 89.9/52.6 (manual DS) and 85.8/41.9 (Pap cytology). In the Thin-Prep Biopsy Study, it reached 95.7/44.4 versus 89.4/35.0 (manual DS), and in anal DS cytology slides, 87.0/41.3 compared to 87.0/27.7 (manual). Robustness testing demonstrated significant stability across image transformations. Cytoreader-V2 improves specificity and reproducibility compared to manual dual-stain reading while maintaining high sensitivity. Its adaptability across populations with consistent performance makes it scalable for diverse clinical settings. Cytoreader-V2 can be a transformative tool in global cervical cancer screening as a critical AI applications in digital pathology.

摘要

在宫颈癌筛查中,使用p16和Ki67的双重染色细胞学检查在对HPV阳性检测结果进行分流方面优于传统巴氏细胞学检查。基于人工智能的评估可以消除主观性、提高性能并便于实施。我们使用来自基于人群的筛查队列的5722张双重染色玻片,开发并验证了Cytoreader-V2。在SurePath凯撒实施研究中,Cytoreader-V2的灵敏度/特异性为87.2%/57.8%,而手动双重染色为89.9/52.6,巴氏细胞学检查为85.8/41.9。在薄层制片活检研究中,其结果为95.7/44.4,而手动双重染色为89.4/35.0;在肛门双重染色细胞学玻片中,结果为87.0/41.3,而手动检查为87.0/27.7。稳健性测试表明,在图像变换过程中具有显著的稳定性。与手动双重染色读数相比,Cytoreader-V2提高了特异性和可重复性,同时保持了高灵敏度。其在不同人群中的适应性以及一致的性能使其能够扩展应用于各种临床环境。作为数字病理学中的一项关键人工智能应用,Cytoreader-V2可以成为全球宫颈癌筛查中的一项变革性工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验