Suppr超能文献

实体器官移植中的机器学习:描绘不断演变的图景。

Machine learning in solid organ transplantation: Charting the evolving landscape.

作者信息

Rawashdeh Badi, Al-Abdallat Haneen, Arpali Emre, Thomas Beje, Dunn Ty B, Cooper Matthew

机构信息

Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53202, United States.

Department of Medicine, Jordan University Hospital, Amman 11263, Jordan.

出版信息

World J Transplant. 2025 Mar 18;15(1):99642. doi: 10.5500/wjt.v15.i1.99642.

Abstract

BACKGROUND

Machine learning (ML), a major branch of artificial intelligence, has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to the field of solid organ transplantation. ML provides revolutionary opportunities in areas such as donor-recipient matching, post-transplant monitoring, and patient care by automatically analyzing large amounts of data, identifying patterns, and forecasting outcomes.

AIM

To conduct a comprehensive bibliometric analysis of publications on the use of ML in transplantation to understand current research trends and their implications.

METHODS

On July 18, a thorough search strategy was used with the Web of Science database. ML and transplantation-related keywords were utilized. With the aid of the VOS viewer application, the identified articles were subjected to bibliometric variable analysis in order to determine publication counts, citation counts, contributing countries, and institutions, among other factors.

RESULTS

Of the 529 articles that were first identified, 427 were deemed relevant for bibliometric analysis. A surge in publications was observed over the last four years, especially after 2018, signifying growing interest in this area. With 209 publications, the United States emerged as the top contributor. Notably, the "" and the "" emerged as the leading journals, publishing the highest number of relevant articles. Frequent keyword searches revealed that patient survival, mortality, outcomes, allocation, and risk assessment were significant themes of focus.

CONCLUSION

The growing body of pertinent publications highlights ML's growing presence in the field of solid organ transplantation. This bibliometric analysis highlights the growing importance of ML in transplant research and highlights its exciting potential to change medical practices and enhance patient outcomes. Encouraging collaboration between significant contributors can potentially fast-track advancements in this interdisciplinary domain.

摘要

背景

机器学习(ML)作为人工智能的一个主要分支,不仅展现出显著改善医疗保健众多领域的潜力,还为实体器官移植领域做出了重大贡献。机器学习通过自动分析大量数据、识别模式和预测结果,在供体 - 受体匹配、移植后监测和患者护理等领域提供了革命性的机遇。

目的

对关于机器学习在移植领域应用的出版物进行全面的文献计量分析,以了解当前的研究趋势及其影响。

方法

7月18日,使用全面的检索策略在科学网数据库中进行检索。使用了与机器学习和移植相关的关键词。借助VOSviewer应用程序,对识别出的文章进行文献计量变量分析,以确定发表数量、被引次数、贡献国家和机构等因素。

结果

在最初识别出的529篇文章中,427篇被认为与文献计量分析相关。在过去四年中观察到出版物数量激增,尤其是在2018年之后,这表明该领域的兴趣日益浓厚。美国以209篇出版物成为最大贡献国。值得注意的是,《》和《》成为发表相关文章数量最多的领先期刊。频繁的关键词搜索显示,患者生存、死亡率、结局、分配和风险评估是重要的重点主题。

结论

相关出版物数量的不断增加凸显了机器学习在实体器官移植领域的日益重要。这项文献计量分析突出了机器学习在移植研究中的重要性日益增加,并强调了其改变医疗实践和改善患者结局的令人兴奋的潜力。鼓励重要贡献者之间的合作可能会加速这一跨学科领域的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/11612896/0548881f5691/99642-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验