Boquet-Pujadas Aleix, Zeng Jian, Tian Ye Ella, Yang Zhijian, Shen Li, Zalesky Andrew, Davatzikos Christos, Wen Junhao
Laboratory of AI and Biomedical Science (LABS), Columbia University, 530 W 166th St, New York, NY 10032, United States.
Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf125.
Artificial intelligence (AI) has been increasingly integrated into imaging genetics to provide intermediate phenotypes (i.e. endophenotypes) that bridge the genetics and clinical manifestations of human disease. However, the genetic architecture of these AI endophenotypes remains largely unexplored in the context of human multiorgan system diseases. Using publicly available genome-wide association study summary statistics from the UK Biobank (UKBB), FinnGen, and the Psychiatric Genomics Consortium, we comprehensively depicted the genetic architecture of 2024 multiorgan AI endophenotypes (MAEs). We comparatively assessed the single-nucleotide polymorphism-based heritability, polygenicity, and natural selection signatures of 2024 MAEs using methods commonly used in the field. Genetic correlation and Mendelian randomization analyses reveal both within-organ relationships and cross-organ interconnections. Bi-directional causal relationships were established between chronic human diseases and MAEs across multiple organ systems, including Alzheimer's disease for the brain, diabetes for the metabolic system, asthma for the pulmonary system, and hypertension for the cardiovascular system. Finally, we derived polygenic risk scores for the 2024 MAEs for individuals not used to calculate MAEs and returned these to the UKBB. Our findings underscore the promise of the MAEs as new instruments to ameliorate overall human health. All results are encapsulated into the MUlTiorgan AI endophenoTypE genetic atlas and are publicly available at https://labs-laboratory.com/mutate.
人工智能(AI)已越来越多地融入影像遗传学,以提供连接人类疾病遗传学和临床表现的中间表型(即内表型)。然而,在人类多器官系统疾病的背景下,这些人工智能内表型的遗传结构在很大程度上仍未得到探索。利用来自英国生物银行(UKBB)、芬兰基因研究项目(FinnGen)和精神疾病基因组学联盟的公开全基因组关联研究汇总统计数据,我们全面描绘了2024种多器官人工智能内表型(MAE)的遗传结构。我们使用该领域常用的方法,对2024种MAE基于单核苷酸多态性的遗传力、多基因性和自然选择特征进行了比较评估。遗传相关性和孟德尔随机化分析揭示了器官内关系和跨器官的相互联系。在包括大脑的阿尔茨海默病、代谢系统的糖尿病、肺部系统的哮喘和心血管系统的高血压在内的多个器官系统的慢性人类疾病与MAE之间建立了双向因果关系。最后,我们为未用于计算MAE的个体得出了2024种MAE的多基因风险评分,并将其返回给UKBB。我们的研究结果强调了MAE作为改善人类整体健康的新工具的前景。所有结果都被整合到多器官人工智能内表型遗传图谱中,并可在https://labs-laboratory.com/mutate上公开获取。