Suppr超能文献

机器学习在牙科中的应用:见解、前景与挑战。

Application of machine learning in dentistry: insights, prospects and challenges.

作者信息

Wang Lin, Xu Yanyan, Wang Weiqian, Lu Yuanyuan

机构信息

Hangzhou Stomatology Hospital, Hangzhou, China.

Health Service Center in Xiaoying Street Community, Hangzhou, China.

出版信息

Acta Odontol Scand. 2025 Mar 27;84:145-154. doi: 10.2340/aos.v84.43345.

Abstract

BACKGROUND

Machine learning (ML) is transforming dentistry by setting new standards for precision and efficiency in clinical practice, while driving improvements in care delivery and quality.

OBJECTIVES

This review: (1) states the necessity to develop ML in dentistry for the purpose of breaking the limitations of traditional dental technologies; (2) discusses the principles of ML-based models utilised in dental clinical practice and care; (3) outlines the application respects of ML in dentistry; and (4) highlights the prospects and challenges to be addressed.

DATA AND SOURCES

In this narrative review, a comprehensive search was conducted in PubMed/MEDLINE, Web of Science, ScienceDirect, and Institute of Electrical and Electronics Engineers (IEEE) Xplore databases.  Conclusions: Machine Learning has demonstrated significant potential in dentistry with its intelligently assistive function, promoting diagnostic efficiency, personalised treatment plans and related streamline workflows. However, challenges related to data privacy, security, interpretability, and ethical considerations were highly urgent to be addressed in the next review, with the objective of creating a backdrop for future research in this rapidly expanding arena.  Clinical significance: Development of ML brought transformative impact in the fields of dentistry, from diagnostic, personalised treatment plan to dental care workflows. Particularly, integrating ML-based models with diagnostic tools will significantly enhance the diagnostic efficiency and precision in dental surgeries and treatments.

摘要

背景

机器学习(ML)正在通过为临床实践中的精准度和效率设定新标准来改变牙科,同时推动护理服务和质量的提升。

目的

本综述:(1)阐述为突破传统牙科技术的局限性而在牙科领域发展机器学习的必要性;(2)讨论牙科临床实践和护理中使用的基于机器学习的模型的原理;(3)概述机器学习在牙科领域的应用方面;(4)强调有待解决的前景和挑战。

数据与来源

在本叙述性综述中,我们在PubMed/MEDLINE、科学网、ScienceDirect以及电气和电子工程师协会(IEEE)Xplore数据库中进行了全面检索。结论:机器学习凭借其智能辅助功能在牙科领域展现出巨大潜力,可提高诊断效率、制定个性化治疗方案并简化相关工作流程。然而,在下一阶段的研究中,与数据隐私、安全、可解释性以及伦理考量相关的挑战亟待解决,以便为这个迅速发展的领域的未来研究创造条件。临床意义:机器学习的发展给牙科领域带来了变革性影响,从诊断、个性化治疗方案到牙科护理工作流程。特别是,将基于机器学习的模型与诊断工具相结合将显著提高牙科手术和治疗中的诊断效率和精准度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0a0/11971948/b9562220c543/AOS-84-43345-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验