Okesanya Olalekan John, Ahmed Mohamed Mustaf, Ogaya Jerico Bautista, Amisu Blessing Olawunmi, Ukoaka Bonaventure Michael, Adigun Olaniyi Abideen, Manirambona Emery, Adebusuyi Olakulehin, Othman Zhinya Kawa, Oluwakemi Olanegan Gloria, Ayando Oluwaseunayo Deborah, Tan Maria Ivy Rochelle S, Idris Nimat Bola, Kayode Hassan Hakeem, Oso Tolutope Adebimpe, Ahmed Musa, Kouwenhoven M B N, Ibrahim Adamu Muhammad, Lucero-Prisno Don Eliseo
Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece.
Department of Medical Laboratory Science, Neuropsychiatric Hospital, Aro, Abeokuta, Ogun State, Nigeria.
Trop Med Health. 2025 Apr 2;53(1):43. doi: 10.1186/s41182-025-00728-2.
Antimicrobial resistance (AMR) poses a global health threat, particularly in low- and middle-income countries (LMICs). Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system technology offers a promising tool to combat AMR by targeting and disabling resistance genes in WHO bacterial priority pathogens. Thus, we systematically reviewed the potential of CRISPR-Cas technology to address AMR.
This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive literature search was conducted using the Scopus and PubMed databases, focusing on publications from 2014 to June 2024. Keywords included "CRISPR/Cas," "antimicrobial resistance," and "pathogen." The eligibility criteria required original studies involving CRISPR/Cas systems that targeted AMR. Data were extracted from eligible studies, qualitatively synthesized, and assessed for bias using the Joanna Briggs Institute (JBI)-standardized tool.
Data from 48 eligible studies revealed diverse CRISPR-Cas systems, including CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas3, targeting various AMR genes, such as blaOXA-232, blaNDM, blaCTX-M, ermB, vanA, mecA, fosA3, blaKPC, and mcr-1, which are responsible for carbapenem, cephalosporin, methicillin, macrolide, vancomycin, colistin, and fosfomycin resistance. Some studies have explored the role of CRISPR in virulence gene suppression, including enterotoxin genes, tsst1, and iutA in Staphylococcus aureus and Klebsiella pneumoniae. Delivery mechanisms include bacteriophages, nanoparticles, electro-transformation, and conjugative plasmids, which demonstrate high efficiency in vitro and in vivo. CRISPR-based diagnostic applications have demonstrated high sensitivity and specificity, with detection limits as low as 2.7 × 10 CFU/mL, significantly outperforming conventional methods. Experimental studies have reported significant reductions in resistant bacterial populations and complete suppression of the targeted strains. Engineered phagemid particles and plasmid-curing systems have been shown to eliminate IncF plasmids, cured plasmids carrying vanA, mcr-1, and blaNDM with 94% efficiency, and restore antibiotic susceptibility. Gene re-sensitization strategies have been used to restore fosfomycin susceptibility in E. coli and eliminate blaKPC-2-mediated carbapenem resistance in MDR bacteria. Whole-genome sequencing and bioinformatics tools have provided deeper insights into CRISPR-mediated defense mechanisms. Optimization strategies have significantly enhanced gene-editing efficiencies, offering a promising approach for tackling AMR in high-priority WHO pathogens.
CRISPR-Cas technology has the potential to address AMR across priority WHO pathogens. While promising, challenges in optimizing in vivo delivery, mitigating potential resistance, and navigating ethical-regulatory barriers must be addressed to facilitate clinical translation.
抗菌药物耐药性(AMR)对全球健康构成威胁,在低收入和中等收入国家(LMICs)尤为严重。成簇规律间隔短回文重复序列(CRISPR)-Cas系统技术提供了一种有前景的工具,可通过靶向并使世界卫生组织(WHO)确定的重点细菌病原体中的耐药基因失活来对抗AMR。因此,我们系统地综述了CRISPR-Cas技术应对AMR的潜力。
本系统综述遵循系统评价和Meta分析的首选报告项目(PRISMA)指南。使用Scopus和PubMed数据库进行全面的文献检索,重点关注2014年至2024年6月的出版物。关键词包括“CRISPR/Cas”、“抗菌药物耐药性”和“病原体”。纳入标准要求是涉及靶向AMR的CRISPR/Cas系统的原始研究。从符合条件的研究中提取数据,进行定性综合,并使用乔安娜·布里格斯研究所(JBI)标准化工具评估偏倚。
48项符合条件的研究数据显示了多种CRISPR-Cas系统,包括CRISPR-Cas9、CRISPR-Cas12a和CRISPR-Cas3,它们靶向各种AMR基因,如blaOXA-232、blaNDM、blaCTX-M、ermB、vanA、mecA、fosA3、blaKPC和mcr-1,这些基因分别导致碳青霉烯类、头孢菌素类、甲氧西林、大环内酯类、万古霉素、黏菌素和磷霉素耐药。一些研究探讨了CRISPR在抑制毒力基因方面的作用,包括金黄色葡萄球菌和肺炎克雷伯菌中的肠毒素基因、tsst1和iutA。传递机制包括噬菌体、纳米颗粒、电转化和接合质粒,它们在体外和体内均显示出高效率。基于CRISPR的诊断应用已显示出高灵敏度和特异性,检测限低至2.7×10 CFU/mL,明显优于传统方法。实验研究报告称耐药细菌种群显著减少,靶向菌株被完全抑制。工程化噬菌粒颗粒和质粒消除系统已被证明可消除IncF质粒,以94%的效率消除携带vanA、mcr-1和blaNDM的质粒,并恢复抗生素敏感性。基因重新致敏策略已被用于恢复大肠杆菌对磷霉素的敏感性,并消除多重耐药细菌中blaKPC-2介导的碳青霉烯类耐药。全基因组测序和生物信息学工具为CRISPR介导的防御机制提供了更深入的见解。优化策略显著提高了基因编辑效率,为应对WHO确定的重点病原体中的AMR提供了一种有前景的方法。
CRISPR-Cas技术有潜力应对WHO确定的重点病原体中的AMR。尽管前景广阔,但必须解决优化体内传递、减轻潜在耐药性以及应对伦理监管障碍等挑战,以促进临床转化。