Ramsden Christopher E, Cutler Roy G, Li Xiufeng, Keyes Gregory S
Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD 21224, USA; NIH, Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD 21224, USA.
Prostaglandins Leukot Essent Fatty Acids. 2025 Jul;205:102681. doi: 10.1016/j.plefa.2025.102681. Epub 2025 Apr 3.
As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with transport and protection of highly vulnerable lipids that are required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. APOE allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the specific molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide-linked dimers and multimers. Here we propose the overarching hypothesis that super-ability (for ApoE2), intermediate ability (for ApoE3) or inability (for ApoE4) to form lipid-protecting intermolecular disulfide bridges, is the central molecular determinant accounting for the disparate effects of APOE alleles on AD risk and amyloid-β and Tau pathologies in humans. We posit that presence and abundance of Cys in human ApoE3 and ApoE2 respectively, conceal and protect vulnerable lipids transported by ApoE from peroxidation by enabling formation of disulfide-linked homo- and heteromeric ApoE complexes. We thus propose that inability to form intermolecular disulfide bridges makes ApoE4-containing lipoproteins uniquely vulnerable to peroxidation and its downstream consequences. Consistent with our model, we found that brain-enriched polyunsaturated fatty acid-containing phospholipids induce disulfide-dependent dimerization and multimerization of ApoE3 and ApoE2 (but not ApoE4). By contrast, incubation with the peroxidation-resistant lipid DMPC or cholesterol alone had minimal effects on dimerization. These novel concepts and findings are integrated into our unifying model implicating peroxidation of ApoE-containing lipoproteins, with consequent ApoE receptor-ligand disruption, as initiating molecular events that ultimately lead to AD in humans.
作为人类大脑中的主要脂质转运蛋白,载脂蛋白E(ApoE)负责运输和保护高度易损脂质,这些脂质是支持和重塑神经元膜所必需的,这一过程依赖于ApoE受体。编码仅在半胱氨酸(Cys)到精氨酸(Arg)交换数量上不同的蛋白质的APOE等位基因变体(ApoE2 [2个Cys]、ApoE3 [1个Cys]、ApoE4 [0个Cys])构成了散发性阿尔茨海默病(AD)最强的遗传风险因素;然而,这些异构体依赖性效应背后的具体分子特征和产生机制尚不清楚。Cys的一个标志性特征是形成二硫键(Cys-Cys)桥的能力,这是形成二硫键连接的二聚体和多聚体所必需的。在这里,我们提出一个总体假设,即形成脂质保护分子间二硫键的超强能力(对于ApoE2)、中等能力(对于ApoE3)或无能力(对于ApoE4),是解释APOE等位基因对人类AD风险以及淀粉样β蛋白和Tau病理产生不同影响的核心分子决定因素。我们认为,人类ApoE3和ApoE2中Cys的存在和丰度分别通过形成二硫键连接的同型和异型ApoE复合物,隐藏并保护ApoE运输的易损脂质免受过氧化。因此,我们提出无法形成分子间二硫键使含ApoE4的脂蛋白特别容易受到过氧化及其下游后果的影响。与我们的模型一致,我们发现富含大脑的含多不饱和脂肪酸的磷脂诱导ApoE3和ApoE2(但不是ApoE4)的二硫键依赖性二聚化和多聚化。相比之下,单独与抗过氧化脂质二肉豆蔻酰磷脂酰胆碱(DMPC)或胆固醇孵育对二聚化的影响最小。这些新的概念和发现被整合到我们的统一模型中,该模型认为含ApoE的脂蛋白的过氧化以及随之而来的ApoE受体-配体破坏,是最终导致人类AD的起始分子事件。