Suppr超能文献

烟酰胺N-甲基转移酶作为神经退行性疾病的潜在治疗靶点:作用机制、挑战及未来方向

Nicotinamide N-methyltransferase as a potential therapeutic target for neurodegenerative disorders: Mechanisms, challenges, and future directions.

作者信息

Liu An, Zhu Xiao-Juan, Sun Wei-Dong, Bi Shuang-Zhou, Zhang Chen-Ying, Lai Shi-Yan, Li Jiang-Hua

机构信息

Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.

Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.

出版信息

Exp Neurol. 2025 Jul;389:115253. doi: 10.1016/j.expneurol.2025.115253. Epub 2025 Apr 10.

Abstract

Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by progressive neuronal loss and functional decline, posing significant global health challenges. Emerging evidence highlights nicotinamide N-methyltransferase (NNMT), a cytosolic enzyme regulating nicotinamide (NAM) methylation, as a pivotal player in NDs through its dual impact on epigenetic regulation and metabolic homeostasis. This review synthesizes current knowledge on NNMT's role in disease pathogenesis, focusing on its epigenetic modulation via DNA hypomethylation and histone modifications, alongside its disruption of NAD synthesis and homocysteine (Hcy) metabolism. Elevated NNMT activity depletes NAD, exacerbating mitochondrial dysfunction and impairing energy metabolism, while increased Hcy levels drive oxidative stress, neuroinflammation, and aberrant protein aggregation (e.g., Aβ, tau, α-synuclein). Notably, NNMT overexpression in AD and PD correlates with neuronal hypomethylation and neurotoxicity, as observed in postmortem brain studies and transgenic models. Mechanistically, NNMT consumes S-adenosylmethionine (SAM), limiting methyl donor availability for DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs), thereby altering gene expression patterns critical for neuronal survival. Concurrently, NNMT-mediated NAD depletion disrupts sirtuin activity (e.g., SIRT1) and mitochondrial biogenesis, accelerating axonal degeneration. Therapeutic strategies targeting NNMT, such as RNA interference (RNAi), small-molecule inhibitors and exercise therapy, show promise in preclinical models by restoring NAD levels and reducing Hcy toxicity. However, challenges persist in achieving cellular specificity, optimizing blood-brain barrier penetration, and mitigating off-target effects. This review underscores NNMT's potential as a multifactorial therapeutic target, bridging metabolic and epigenetic dysregulation in NDs. Future research should prioritize elucidating tissue-specific NNMT interactions, refining inhibitor pharmacokinetics, and validating translational efficacy in clinical trials. Addressing these gaps could pave the way for novel disease-modifying therapies to combat the rising burden of neurodegeneration.

摘要

神经退行性疾病(NDs),包括阿尔茨海默病(AD)、帕金森病(PD)和亨廷顿舞蹈病(HD),其特征是神经元进行性丧失和功能衰退,对全球健康构成重大挑战。新出现的证据表明,烟酰胺N-甲基转移酶(NNMT)是一种调节烟酰胺(NAM)甲基化的胞质酶,通过其对表观遗传调控和代谢稳态的双重影响,在神经退行性疾病中起着关键作用。本综述综合了目前关于NNMT在疾病发病机制中作用的知识,重点关注其通过DNA低甲基化和组蛋白修饰进行的表观遗传调控,以及其对NAD合成和同型半胱氨酸(Hcy)代谢的破坏。NNMT活性升高会消耗NAD,加剧线粒体功能障碍并损害能量代谢,而Hcy水平升高会导致氧化应激、神经炎症和异常蛋白质聚集(如Aβ、tau、α-突触核蛋白)。值得注意的是,在死后大脑研究和转基因模型中观察到,AD和PD中NNMT的过表达与神经元低甲基化和神经毒性相关。从机制上讲,NNMT消耗S-腺苷甲硫氨酸(SAM),限制了DNA甲基转移酶(DNMTs)和组蛋白甲基转移酶(HMTs)的甲基供体可用性,从而改变了对神经元存活至关重要的基因表达模式。同时,NNMT介导的NAD消耗会破坏去乙酰化酶活性(如SIRT1)和线粒体生物发生,加速轴突变性。针对NNMT的治疗策略,如RNA干扰(RNAi)、小分子抑制剂和运动疗法,通过恢复NAD水平和降低Hcy毒性,在临床前模型中显示出前景。然而,在实现细胞特异性、优化血脑屏障穿透性和减轻脱靶效应方面仍然存在挑战。本综述强调了NNMT作为一个多因素治疗靶点的潜力,它在神经退行性疾病中弥合了代谢和表观遗传失调。未来的研究应优先阐明组织特异性的NNMT相互作用,优化抑制剂的药代动力学,并在临床试验中验证转化疗效。填补这些空白可能为对抗神经退行性疾病日益增加的负担的新型疾病修饰疗法铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验