Vyas Pratik, Santra Kakali, Preeyanka Naupada, Gupta Anu, Weil-Ktorza Orit, Zhu Qirong, Metanis Norman, Fransson Jonas, Longo Liam M, Naaman Ron
Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
J Phys Chem B. 2025 Apr 24;129(16):3978-3987. doi: 10.1021/acs.jpcb.5c01150. Epub 2025 Apr 15.
Primitive nucleic acids and peptides likely collaborated in early biochemistry. What forces drove their interactions and how did these forces shape the properties of primitive complexes? We investigated how two model primordial polypeptides associate with DNA. When peptides were coupled to a ferromagnetic substrate, DNA binding depended on the substrate's magnetic moment orientation. Reversing the magnetic field nearly abolished binding despite complementary charges. Inverting the peptide chirality or just the cysteine residue reversed this effect. These results are attributed to the chiral-induced spin selectivity (CISS) effect, where molecular chirality and electron spin alter a protein's electric polarizability. The presence of CISS in simple protein-DNA complexes suggests that it played a significant role in ancient biomolecular interactions. A major consequence of CISS is enhancement of the kinetic stability of protein-nucleic acid complexes. These findings reveal how chirality and spin influence bioassociation, offering insights into primitive biochemical evolution and shaping contemporary protein functions.
原始核酸和肽可能在早期生物化学中相互协作。是什么力量驱动了它们之间的相互作用,这些力量又是如何塑造原始复合物的特性的呢?我们研究了两种模型原始多肽与DNA的结合方式。当肽与铁磁底物偶联时,DNA结合取决于底物的磁矩方向。尽管存在互补电荷,但反转磁场几乎会消除结合。反转肽的手性或仅反转半胱氨酸残基会使这种效应逆转。这些结果归因于手性诱导自旋选择性(CISS)效应,即分子手性和电子自旋会改变蛋白质的电极化率。简单蛋白质-DNA复合物中CISS的存在表明它在古代生物分子相互作用中发挥了重要作用。CISS的一个主要结果是增强了蛋白质-核酸复合物的动力学稳定性。这些发现揭示了手性和自旋如何影响生物结合,为原始生物化学进化提供了见解,并塑造了当代蛋白质的功能。