Suppr超能文献

机器学习在动物源食品的食品安全与HACCP监测中的应用

Applications of Machine Learning in Food Safety and HACCP Monitoring of Animal-Source Foods.

作者信息

Revelou Panagiota-Kyriaki, Tsakali Efstathia, Batrinou Anthimia, Strati Irini F

机构信息

Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece.

出版信息

Foods. 2025 Mar 8;14(6):922. doi: 10.3390/foods14060922.

Abstract

Integrating advanced computing techniques into food safety management has attracted significant attention recently. Machine learning (ML) algorithms offer innovative solutions for Hazard Analysis Critical Control Point (HACCP) monitoring by providing advanced data analysis capabilities and have proven to be powerful tools for assessing the safety of Animal-Source Foods (ASFs). Studies that link ML with HACCP monitoring in ASFs are limited. The present review provides an overview of ML, feature extraction, and selection algorithms employed for food safety. Several non-destructive techniques are presented, including spectroscopic methods, smartphone-based sensors, paper chromogenic arrays, machine vision, and hyperspectral imaging combined with ML algorithms. Prospects include enhancing predictive models for food safety with the development of hybrid Artificial Intelligence (AI) models and the automation of quality control processes using AI-driven computer vision, which could revolutionize food safety inspections. However, handling conceivable inclinations in AI models is vital to guaranteeing reasonable and exact hazard assessments in an assortment of nourishment generation settings. Moreover, moving forward, the interpretability of ML models will make them more straightforward and dependable. Conclusively, applying ML algorithms allows real-time monitoring and predictive analytics and can significantly reduce the risks associated with ASF consumption.

摘要

将先进的计算技术融入食品安全管理最近引起了广泛关注。机器学习(ML)算法通过提供先进的数据分析能力,为危害分析与关键控制点(HACCP)监测提供了创新解决方案,并已被证明是评估动物源食品(ASF)安全性的有力工具。将ML与ASF中的HACCP监测联系起来的研究有限。本综述概述了用于食品安全的ML、特征提取和选择算法。介绍了几种无损技术,包括光谱方法、基于智能手机的传感器、纸质显色阵列、机器视觉以及与ML算法相结合的高光谱成像。前景包括随着混合人工智能(AI)模型的发展增强食品安全预测模型,以及使用AI驱动的计算机视觉实现质量控制过程的自动化,这可能会彻底改变食品安全检查。然而,处理AI模型中可能存在的偏差对于确保在各种食品生产环境中进行合理准确的危害评估至关重要。此外,展望未来,ML模型的可解释性将使其更加直观和可靠。总之,应用ML算法可以实现实时监测和预测分析,并能显著降低与食用ASF相关的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验