Suppr超能文献

基于流程图嵌入的知识检索多模态大语言模型用于形成胰腺囊性病变的随访建议

Multimodal Large Language Model With Knowledge Retrieval Using Flowchart Embedding for Forming Follow-Up Recommendations for Pancreatic Cystic Lesions.

作者信息

Zhu Zheren, Liu Jin, Hong Cheng W, Houshmand Sina, Wang Kang, Yang Yang

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143.

出版信息

AJR Am J Roentgenol. 2025 Jul 16:1-12. doi: 10.2214/AJR.25.32729.

Abstract

. The American College of Radiology (ACR) Incidental Findings Committee (IFC) algorithm provides guidance for pancreatic cystic lesion (PCL) management. Its implementation using plain-text large language model (LLM) solutions is challenging given that key components include multimodal data (e.g., figures and tables). . The purpose of the study is to evaluate a multimodal LLM approach incorporating knowledge retrieval using flowchart embedding for forming follow-up recommendations for PCL management. . This retrospective study included patients who underwent abdominal CT or MRI from September 1, 2023, to September 1, 2024, and whose report mentioned a PCL. The reports' Findings sections were inputted to a multimodal LLM (GPT-4o). For task 1 (198 patients: mean age, 69.0 ± 13.0 [SD] years; 110 women, 88 men), the LLM assessed PCL features (presence of PCL, PCL size and location, presence of main pancreatic duct communication, presence of worrisome features or high-risk stigmata) and formed a follow-up recommendation using three knowledge retrieval methods (default knowledge, plain-text retrieval-augmented generation [RAG] from the ACR IFC algorithm PDF document, and flowchart embedding using the LLM's image-to-text conversion for in-context integration of the document's flowcharts and tables). For task 2 (85 patients: mean initial age, 69.2 ± 10.8 years; 48 women, 37 men), an additional relevant prior report was inputted; the LLM assessed for interval PCL change and provided an adjusted follow-up schedule accounting for prior imaging using flowchart embedding. Three radiologists assessed LLM accuracy in task 1 for PCL findings in consensus and follow-up recommendations independently; one radiologist assessed accuracy in task 2. . For task 1, the LLM with flowchart embedding had accuracy for PCL features of 98.0-99.0%. The accuracy of the LLM follow-up recommendations based on default knowledge, plain-text RAG, and flowchart embedding for radiologist 1 was 42.4%, 23.7%, and 89.9% ( < .001), respectively; radiologist 2 was 39.9%, 24.2%, and 91.9% ( < .001); and radiologist 3 was 40.9%, 25.3%, and 91.9% ( < .001). For task 2, the LLM using flowchart embedding showed an accuracy for interval PCL change of 96.5% and for adjusted follow-up schedules of 81.2%. . Multimodal flowchart embedding aided the LLM's automated provision of follow-up recommendations adherent to a clinical guidance document. . The framework could be extended to other incidental findings through the use of other clinical guidance documents as the model input.

摘要

美国放射学会(ACR)偶然发现委员会(IFC)的算法为胰腺囊性病变(PCL)的管理提供了指导。鉴于关键组件包括多模态数据(如图表),使用纯文本大语言模型(LLM)解决方案来实施该算法具有挑战性。本研究的目的是评估一种多模态LLM方法,该方法结合了使用流程图嵌入的知识检索,以形成PCL管理的随访建议。这项回顾性研究纳入了2023年9月1日至2024年9月1日期间接受腹部CT或MRI检查且报告中提及PCL的患者。报告的“发现”部分被输入到一个多模态LLM(GPT-4o)中。对于任务1(198例患者:平均年龄69.0±13.0[标准差]岁;110名女性,88名男性),LLM评估PCL特征(PCL的存在、PCL大小和位置、主胰管连通情况、可疑特征或高风险征象的存在),并使用三种知识检索方法(默认知识、从ACR IFC算法PDF文档进行纯文本检索增强生成[RAG]以及使用LLM的图像到文本转换进行流程图嵌入,以便在上下文中整合文档的流程图和表格)形成随访建议。对于任务2(85例患者:平均初始年龄69.2±10.8岁;48名女性,37名男性),输入了一份额外的相关既往报告;LLM评估PCL的间隔变化,并使用流程图嵌入提供考虑既往影像的调整后随访计划。三名放射科医生独立评估任务1中LLM对PCL发现的准确性和随访建议的一致性;一名放射科医生评估任务2的准确性。对于任务1,使用流程图嵌入的LLM对PCL特征的准确性为98.0 - 99.0%。基于默认知识、纯文本RAG和流程图嵌入的LLM随访建议对放射科医生1的准确性分别为42.4%、23.7%和89.9%(P <.001);放射科医生2分别为39.9%、24.2%和91.9%(P <.001);放射科医生3分别为40.9%、25.3%和91.9%(P <.001)。对于任务2,使用流程图嵌入的LLM对PCL间隔变化的准确性为96.5%,对调整后随访计划的准确性为81.2%。多模态流程图嵌入有助于LLM自动提供符合临床指导文件的随访建议。该框架可通过使用其他临床指导文件作为模型输入扩展到其他偶然发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验