Suppr超能文献

情绪听觉任务期间抑郁症患者动态脑电图生物标志物的前额叶内部事件驱动分析

Prefrontal Internal Event-Driven Analysis of Dynamical Electroencephalographic Biomarkers in Depression During Emotional Auditory Task.

作者信息

Zhao Qinglin, Cui Kunbo, Jiang Hua, Wu Zhongqing, Zhang Lixin, Zhao Mingqi, Hu Bin

机构信息

Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China.

School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China.

出版信息

CNS Neurosci Ther. 2025 Apr;31(4):e70382. doi: 10.1111/cns.70382.

Abstract

AIMS

This study for the first time proposed a novel prefrontal internal event-driven analytic framework for electroencepalography (EEG) data, which aim to dynamically resolve neural processes during natural emotional auditory tasks.

METHODS

The framework employed a novel unsupervised time-series clustering model for internal prefrontal event extraction, which supports event-related analyses with the absence of external event labeling. The framework was validated using a 64-channel EEG data obtained from 110 (55 depressed) subjects in a three-polar (positive, neutral, and negative) emotional-auditory task.

RESULTS

Our results suggest that anhedonia in depressed patients are associated with high activation levels in multiple brain regions during specific internal events, and we found that cross-frequency modulation of the bilateral prefrontal lobe with other relevant regions revealed completely different unidirectional patterns for the positive and negative tasks.

CONCLUSION

Our study confirmed the effectiveness of the framework in resolving fine-grained internal event-driven neural processes without relying on traditional precise event-related data acquisision paradigms that often require high attention on the task events and causes high cognitive load. Our study present new insights for identifying dynamical electroencephalographic biomarkers in depression, which potentially provide EEG signal decoding solutions for EEG feedback-based closed-loop intervention of depression.

摘要

目的

本研究首次提出了一种用于脑电图(EEG)数据的新型前额叶内部事件驱动分析框架,旨在动态解析自然情绪听觉任务期间的神经过程。

方法

该框架采用了一种新型无监督时间序列聚类模型来提取前额叶内部事件,支持在没有外部事件标记的情况下进行与事件相关的分析。使用从110名(55名抑郁症患者)受试者在三极(积极、中性和消极)情绪听觉任务中获得的64通道EEG数据对该框架进行了验证。

结果

我们的结果表明,抑郁症患者的快感缺失与特定内部事件期间多个脑区的高激活水平相关,并且我们发现双侧前额叶与其他相关区域的跨频调制在积极和消极任务中显示出完全不同的单向模式。

结论

我们的研究证实了该框架在解析细粒度内部事件驱动的神经过程方面的有效性,而无需依赖传统的精确事件相关数据采集范式,这些范式通常需要高度关注任务事件并导致高认知负荷。我们的研究为识别抑郁症中的动态脑电图生物标志物提供了新的见解,这可能为基于脑电图反馈的抑郁症闭环干预提供脑电图信号解码解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ec8/12001428/6b7a9ad71cc7/CNS-31-e70382-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验