van Schaik Thijs A, Chen Kok-Siong, Kanaya Nobuhiko, Moreno-Lama Lucia, Freeman Nicolas W, Wang Mian, Li Wanlu, Zhang Yu Shrike, Vrbanac Vladimir, Huang Raymond, Wakimoto Hiroaki, Reardon David, Shah Khalid
Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Clin Cancer Res. 2025 Jul 1;31(13):2793-2813. doi: 10.1158/1078-0432.CCR-24-3835.
Death receptor (DR)-targeted therapies offer a promising tumor cell-specific therapeutic strategy for highly malignant brain tumors, such as glioblastoma (GBM). However, whether DR-mediated cell death leads to activation of the adaptive immune system and impacts the tumor immune microenvironment (TIME) remains unknown. In this study, we explored the (i) immunomodulatory role of secretable human DR4/5 ligand, TNF-related apoptosis-inducing ligand (S-TRAIL) and (ii) the therapeutic potential of mesenchymal stem cell (SC)-delivered S-TRAIL and myeloid progenitor cell-activating cytokine, FMS-like tyrosine kinase 3 ligand (FLT3L).
We created syngeneic murine immune-active and -suppressive mouse GBM tumor models expressing a human-murine chimeric DR5. Next, we created therapeutic SCs that release FLT3L and S-TRAIL and assessed their efficacy in GBM tumor models. To facilitate clinical translation, we tested the mechanism-based efficacy of encapsulated SC-TRAIL/FLT3L in both syngeneic and humanized mouse tumor models of GBM resection.
We show that S-TRAIL-induced apoptosis in GBM cells provokes infiltration and maturation of dendritic cells within the TIME in vivo. Next, we show that locoregional transplantation of encapsulated bimodal SCs expressing S-TRAIL and FLT3L post surgical GBM resection improves the survival probability and induces upregulation of conventional dendritic cell type 1 and CD8+ T cells. Furthermore, treatment with encapsulated off-the-shelf clinical-grade bimodal human SCs in GBM-bearing humanized mice results in a significant decrease in tumor volumes.
This study uncovers the immunologic role of TRAIL-mediated cell death in the TIME and provides evidence for the encapsulated cell-based therapy to kill residual tumor cells and induce long-term immunity.
针对死亡受体(DR)的疗法为胶质母细胞瘤(GBM)等高恶性脑肿瘤提供了一种有前景的肿瘤细胞特异性治疗策略。然而,DR介导的细胞死亡是否会激活适应性免疫系统并影响肿瘤免疫微环境(TIME)仍不清楚。在本研究中,我们探讨了(i)可分泌的人DR4/5配体、肿瘤坏死因子相关凋亡诱导配体(S-TRAIL)的免疫调节作用,以及(ii)间充质干细胞(SC)递送的S-TRAIL和髓系祖细胞激活细胞因子FMS样酪氨酸激酶3配体(FLT3L)的治疗潜力。
我们创建了表达人鼠嵌合DR5的同基因小鼠免疫活性和免疫抑制性小鼠GBM肿瘤模型。接下来,我们创建了释放FLT3L和S-TRAIL的治疗性SCs,并评估了它们在GBM肿瘤模型中的疗效。为促进临床转化,我们在GBM切除的同基因和人源化小鼠肿瘤模型中测试了封装的SC-TRAIL/FLT3L基于机制的疗效。
我们表明,S-TRAIL诱导的GBM细胞凋亡在体内可激发TIME内树突状细胞的浸润和成熟。接下来,我们表明,在GBM手术后局部移植表达S-TRAIL和FLT3L的封装双峰SCs可提高生存概率,并诱导传统1型树突状细胞和CD8+T细胞上调。此外,在携带GBM的人源化小鼠中用封装的现成临床级双峰人SCs进行治疗可导致肿瘤体积显著减小。
本研究揭示了TRAIL介导的细胞死亡在TIME中的免疫作用,并为基于封装细胞的疗法杀死残留肿瘤细胞并诱导长期免疫提供了证据。