Suppr超能文献

酶功能模型的根本性转变。

A Foundational Shift in Models for Enzyme Function.

作者信息

Klinman Judith P, Miller Susan M, Richards Nigel G J

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.

Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States.

出版信息

J Am Chem Soc. 2025 May 7;147(18):14884-14904. doi: 10.1021/jacs.5c02388. Epub 2025 Apr 25.

Abstract

This Perspective addresses the unresolved, and still hotly contested, question of how enzymes transition from stable enzyme-substrate (ES) complexes to successful, femtosecond barrier crossings. By extending Marcus theory to enzyme-catalyzed reactions, we argue that environmental reorganization of the protein scaffold, together with associated water molecules, achieves the intersection of reactant and product potential energy surfaces. After discussing the experimentally demonstrated importance of reduced activation enthalpy in enzyme-catalyzed transformations, we describe new methodologies that measure the temperature dependence of (i) time-averaged hydrogen/deuterium exchange into backbone amides and (ii) time-dependent Stokes shifts to longer emission wavelengths in appended chromophores at the protein/water interface. These methods not only identify specific pathways for the transfer of thermal energy from solvent to the reacting bonds of bound substrates but also suggest that collective thermally activated protein restructuring must occur very rapidly (on the ns-ps time scale) over long distances. Based on these findings, we introduce a comprehensive model for how barrier crossing takes place from the ES complex. This exploits the structural preorganization inherent in protein folding and subsequent conformational sampling, which optimally positions essential catalytic components within ES ground states and correctly places reactive bonds in the substrate(s) relative to embedded energy transfer networks connecting the protein surface to the active site. The existence of these anisotropic energy distribution pathways introduces a new dimension into the ongoing quest for improved enzyme design.

摘要

这篇综述探讨了一个尚未解决且仍备受争议的问题

酶如何从稳定的酶 - 底物(ES)复合物转变为成功的飞秒级障碍穿越。通过将马库斯理论扩展到酶催化反应,我们认为蛋白质支架及其相关水分子的环境重组实现了反应物和产物势能面的交汇。在讨论了实验证明的降低活化焓在酶催化转化中的重要性之后,我们描述了新的方法,这些方法用于测量(i)主链酰胺中时间平均的氢/氘交换以及(ii)蛋白质/水界面处附加发色团发射波长向更长波长的时间依赖性斯托克斯位移的温度依赖性。这些方法不仅确定了热能从溶剂转移到结合底物反应键的特定途径,还表明集体热激活的蛋白质重组必须在很长距离上非常迅速地发生(在纳秒 - 皮秒时间尺度上)。基于这些发现,我们引入了一个关于从ES复合物进行障碍穿越的综合模型。这利用了蛋白质折叠中固有的结构预组织和随后的构象采样,它将必需的催化成分最佳地定位在ES基态内,并相对于连接蛋白质表面到活性位点的嵌入能量转移网络正确地放置底物中的反应键。这些各向异性能量分布途径的存在为不断寻求改进的酶设计引入了一个新的维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0387/12063184/5c6f1245b867/ja5c02388_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验