Suppr超能文献

标记集对逆运动学结果的影响,以指导无标记运动捕捉标注。

The influence of the marker set on inverse kinematics results to inform markerless motion capture annotations.

作者信息

Mundt Marion, Pagnon David, Colyer Steffi

机构信息

Nutrition and Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia.

UWA Tech & Policy Lab, The University of Western Australia, Crawley, WA, Australia.

出版信息

Sci Rep. 2025 Apr 25;15(1):14547. doi: 10.1038/s41598-025-97219-5.

Abstract

Markerless motion capture has the potential to enable biomechanical analyses without specialised, high-cost equipment. However, the comparability of many markerless motion capture frameworks with the most used marker-based method is limited. One reason for this is the lack of high-quality, biomechanically-informed datasets that are needed to train markerless models. This study aimed to inform the development of such a dataset by systematically analysing the agreement between a gold-standard marker set and a reduced number of markers to solve inverse kinematics (IK). We analysed the impact of different marker positions on the IK solution using an OpenSim lower body model with real and synthetic data of running, walking and counter movement jumps. We found that one mid-segment marker in addition to two anatomical markers per segment result in the best agreement to a gold-standard marker set. The results for real and synthetic data across all movements were similar, with synthetic data showing slightly better agreement with a reduced number of markers (root mean squared error 1.55-8.27 real data, 1.27-7.79 synthetic data), likely due to limited soft tissue artefacts and missing human error in marker placement. These findings can support the development of a dataset to retrain markerless models incorporating biomechanical knowledge.

摘要

无标记运动捕捉有潜力在无需专门的高成本设备的情况下进行生物力学分析。然而,许多无标记运动捕捉框架与最常用的基于标记的方法之间的可比性有限。造成这种情况的一个原因是缺乏训练无标记模型所需的高质量、具有生物力学依据的数据集。本研究旨在通过系统分析金标准标记集与用于求解逆运动学(IK)的减少数量的标记之间的一致性,为开发这样一个数据集提供信息。我们使用具有跑步、行走和反向运动跳跃的真实和合成数据的OpenSim下肢模型,分析了不同标记位置对IK解的影响。我们发现,除了每段两个解剖学标记外,再加上一个中段标记,与金标准标记集的一致性最佳。所有运动的真实数据和合成数据结果相似,合成数据在标记数量减少时显示出稍好的一致性(均方根误差:真实数据为1.55 - 8.27,合成数据为1.27 - 7.79),这可能是由于软组织伪影有限以及标记放置中人为误差较少。这些发现可为开发一个结合生物力学知识重新训练无标记模型的数据集提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5de/12032346/65dd0137d68e/41598_2025_97219_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验