Lopez Simon Miguel M, Lee Jay-Ron, Lin Wan-Chen
Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
Br J Pharmacol. 2025 Aug;182(16):3870-3883. doi: 10.1111/bph.70066. Epub 2025 Apr 27.
Neuronal inhibition is largely mediated by type-A GABA receptors (GABARs), a family of ligand-gated chloride-permeable channels, which can be sub-classified by their subunit composition. Unravelling the function and distribution of each GABAR subtype is essential for a holistic understanding of GABAergic inhibition in health and diseases. Photopharmacology, a technique that utilises light-sensitive compounds to precisely manipulate endogenous proteins, is powerful for this purpose. To resolve the molecular complexity of neuronal inhibition, we aimed to develop subtype-selective photoswitchable agonists for GABARs.
Inspired by THIP (gaboxadol), an agonist selective for δ subunit-containing GABARs (δ-GABARs), we merged a photoswitch moiety (azobenzene) with an analogue of THIP (isoguvacine) to construct Az-IGU. Using whole-cell voltage-clamp recording, Az-IGU was tested on 13 GABAR subtypes expressed in human embryonic kidney (HEK) cells. Optical activation of endogenous GABARs was examined via electrophysiology in cultured cortical neurons.
In HEK cells, Az-IGU exerted reversible photo-agonism selectively for α4β3δ and α6β3δ GABARs, two major mediators of tonic inhibition. Pharmacological and mutagenesis studies suggested that activation of the α4β3δ GABAR involves interaction between Az-IGU and the GABA-binding pocket and is strongly correlated with the spontaneous activity of the receptor. In cultured cortical neurons, photoisomerisation of Az-IGU triggered responses that enabled reversible control of action potential firing.
GABARs are potential therapeutic targets for many disorders. However, their physiological and pathophysiological roles remain largely unexplored. Az-IGU may enable photopharmacological studies of α4/6β3δ GABARs, providing new opportunities for biomedical and neurobiological applications.
神经元抑制主要由A型γ-氨基丁酸受体(GABARs)介导,GABARs是一类配体门控的氯离子通透通道家族,可根据其亚基组成进行细分。阐明每种GABAR亚型的功能和分布对于全面理解健康和疾病状态下的GABA能抑制至关重要。光药理学是一种利用光敏化合物精确操纵内源性蛋白质的技术,在此方面具有强大作用。为解析神经元抑制的分子复杂性,我们旨在开发GABARs的亚型选择性光开关激动剂。
受THIP(加波沙朵)启发,THIP是一种对含δ亚基的GABARs(δ-GABARs)具有选择性的激动剂,我们将光开关部分(偶氮苯)与THIP类似物(异谷氨酰胺)融合构建了Az-IGU。使用全细胞膜片钳记录技术,在人胚肾(HEK)细胞中表达的13种GABAR亚型上对Az-IGU进行测试。通过对培养的皮质神经元进行电生理学研究来检测内源性GABARs的光激活情况。
在HEK细胞中,Az-IGU对α4β3δ和α6β3δ GABARs表现出选择性的可逆光激动作用,这两种受体是紧张性抑制的主要介质。药理学和诱变研究表明,α4β3δ GABARs的激活涉及Az-IGU与GABA结合口袋之间的相互作用,并且与受体的自发活性密切相关。在培养的皮质神经元中,Az-IGU的光异构化引发了反应,能够对动作电位发放进行可逆控制。
GABARs是许多疾病潜在的治疗靶点。然而,它们的生理和病理生理作用在很大程度上仍未被探索。Az-IGU可能有助于对α4/6β3δ GABARs进行光药理学研究,为生物医学和神经生物学应用提供新的机会。