Suppr超能文献

用于流动态太阳能燃料生产的二氧化碳直接空气捕获。

Direct air capture of CO for solar fuel production in flow.

作者信息

Kar Sayan, Kim Dongseok, Bin Mohamad Annuar Ariffin, Sarma Bidyut Bikash, Stanton Michael, Lam Erwin, Bhattacharjee Subhajit, Karak Suvendu, Greer Heather F, Reisner Erwin

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.

出版信息

Nat Energy. 2025;10(4):448-459. doi: 10.1038/s41560-025-01714-y. Epub 2025 Feb 13.

Abstract

Direct air capture is an emerging technology to decrease atmospheric CO levels, but it is currently costly and the long-term consequences of CO storage are uncertain. An alternative approach is to utilize atmospheric CO on-site to produce value-added renewable fuels, but current CO utilization technologies predominantly require a concentrated CO feed or high temperature. Here we report a gas-phase dual-bed direct air carbon capture and utilization flow reactor that produces syngas (CO + H) through on-site utilization of air-captured CO using light without requiring high temperature or pressure. The reactor consists of a bed of solid silica-amine adsorbent to capture aerobic CO and produce CO-free air; concentrated light is used to release the captured CO and convert it to syngas over a bed of a silica/alumina-titania-cobalt bis(terpyridine) molecular-semiconductor photocatalyst. We use the oxidation of depolymerized poly(ethylene terephthalate) plastics as the counter-reaction. We envision this technology to operate in a diurnal fashion where CO is captured during night-time and converted to syngas under concentrated sunlight during the day.

摘要

直接空气捕获是一种新兴的降低大气中一氧化碳水平的技术,但目前成本高昂,且一氧化碳储存的长期后果尚不确定。另一种方法是在现场利用大气中的一氧化碳来生产增值可再生燃料,但目前的一氧化碳利用技术主要需要高浓度的一氧化碳进料或高温。在此,我们报告了一种气相双床直接空气碳捕获与利用流动反应器,该反应器通过在不要求高温或高压的情况下利用光对捕获的空气中的一氧化碳进行现场利用来生产合成气(一氧化碳+氢气)。该反应器由一层固体硅胺吸附剂组成,用于捕获需氧一氧化碳并产生无一氧化碳的空气;集中光用于释放捕获的一氧化碳,并使其在二氧化硅/氧化铝-二氧化钛-双(三联吡啶)钴分子半导体光催化剂层上转化为合成气。我们使用解聚的聚对苯二甲酸乙二酯塑料的氧化作为逆反应。我们设想这项技术以昼夜方式运行,即在夜间捕获一氧化碳,白天在集中阳光下将其转化为合成气。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8270/12021658/3f3a08488830/41560_2025_1714_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验