Krishnan Kaviya Sree, Rangasamy Anandham, Arunan Yuvasri Errakutty, Dananjeyan Balachandar, Subramanium Thiyageshwari, Saminathan Vincent
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
Sci Prog. 2025 Apr-Jun;108(2):368504251338943. doi: 10.1177/00368504251338943. Epub 2025 May 5.
Groundnut ( L.) is a vital leguminous oilseed crop, widely cultivated in tropical and subtropical regions due to its high nutritional and economic significance in food, feed, and oil purposes. It is a rich source of protein, oil, vitamins, minerals, and bioactive compounds with anti-inflammatory, anticancer, and anti-aging properties. Globally, groundnut production is approximately 54.2 million tonnes, with India contributing 10.1 million tonnes through rainfed cultivation. However, its productivity is constrained by drought, salinity, soil nutrient deficits, and disease infestations. Conventional farming depends on chemical inputs to enhance yield and productivity but negatively impacts soil health and fertility, reduces microbial diversity, and pollutes agroecosystems, creating an urgent need for sustainable alternatives. Microbe-based bioinoculants comprising nitrogen-fixers, phosphorus solubilizers, potassium solubilizers, sulphur oxidizers, other plant growth-promoting rhizobacteria (PGPR), mycorrhizal fungi, and cyanobacteria offer an alternative approach to enhance the growth and yield of groundnut through various direct and indirect mechanisms, including augmenting nutrient absorption, improving quality parameters, suppressing plant pathogens, stimulating plant defence, and increasing resilience to abiotic stresses. This narrative review examines the diversity, benefits, and growth-promoting mechanisms of rhizospheric, phyllospheric, and endophytic microorganisms associated with groundnut. Additionally, molecular docking of groundnut root exudate metabolites, produced upon microbial inoculation, with stress-responsive proteins highlights the significance of microbial inoculants in mitigating drought and salinity stresses. This review synthesizes recent advances in microbial inoculant applications, highlighting their potential to revolutionize sustainable groundnut cultivation. Therefore, microbial inoculants provide a promising solution ensuring sustainability and assurance of food security amid global difficulties.
花生(Arachis hypogaea L.)是一种重要的豆科油料作物,因其在食品、饲料和油脂用途方面具有很高的营养和经济价值,而在热带和亚热带地区广泛种植。它富含蛋白质、油脂、维生素、矿物质和具有抗炎、抗癌和抗衰老特性的生物活性化合物。全球花生产量约为5420万吨,印度通过雨养种植贡献了1010万吨。然而,其生产力受到干旱、盐度、土壤养分亏缺和病虫害侵袭的限制。传统农业依靠化学投入来提高产量和生产力,但对土壤健康和肥力产生负面影响,减少微生物多样性,并污染农业生态系统,因此迫切需要可持续的替代方法。基于微生物的生物接种剂包括固氮菌、解磷菌、解钾菌、硫氧化菌、其他促植物生长根际细菌(PGPR)、菌根真菌和蓝细菌,它们通过各种直接和间接机制,包括增加养分吸收、改善品质参数、抑制植物病原体、刺激植物防御以及提高对非生物胁迫的恢复力,为提高花生的生长和产量提供了一种替代方法。这篇叙述性综述研究了与花生相关的根际、叶际和内生微生物的多样性、益处和促生长机制。此外,微生物接种后产生的花生根际分泌物代谢物与胁迫响应蛋白的分子对接突出了微生物接种剂在减轻干旱和盐度胁迫方面的重要性。本综述综合了微生物接种剂应用的最新进展,强调了它们在革新可持续花生种植方面的潜力。因此,微生物接种剂提供了一个有前景的解决方案,可确保在全球困难局面下实现可持续性和粮食安全保障。