Li Zhishang, Tian Zhenhua, Belling Jason N, Rich Joseph T, Zhu Haodong, Ma Zhehan, Bachman Hunter, Shen Liang, Liang Yaosi, Qi Xiaolin, Heidenreich Liv K, Gong Yao, Yang Shujie, Zhang Wenfen, Zhang Peiran, Fu Yingchun, Ying Yibin, Jonas Steven J, Li Yanbin, Weiss Paul S, Huang Tony J
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
Engineering (Beijing). 2025 Apr;47:130-138. doi: 10.1016/j.eng.2024.11.030. Epub 2024 Dec 14.
Controlled intracellular delivery of biomolecular cargo is critical for developing targeted therapeutics and cell reprogramming. Conventional delivery approaches (e.g., endocytosis of nano-vectors, microinjection, and electroporation) usually require time-consuming uptake processes, labor-intensive operations, and/or costly specialized equipment. Here, we present an acoustofluidics-based intracellular delivery approach capable of effectively delivering various functional nanomaterials to multiple cell types (e.g., adherent and suspension cancer cells). By tuning the standing acoustic waves in a glass capillary, our approach can push cells in flow to the capillary wall and enhance membrane permeability by increasing membrane stress to deform cells via acoustic radiation forces. Moreover, by coating the capillary with cargo-encapsulated nanoparticles, our approach can achieve controllable cell-nanoparticle contact and facilitate nanomaterial delivery beyond Brownian movement. Based on these mechanisms, we have successfully delivered nanoparticles loaded with small molecules or protein-based cargo to U937 and HeLa cells. Our results demonstrate enhanced delivery efficiency compared to attempts made without the use of acoustofluidics. Moreover, compared to conventional sonoporation methods, our approach does not require special contrast agents with microbubbles. This acoustofluidics-based approach creates exciting opportunities to achieve controllable intracellular delivery of various biomolecular cargoes to diverse cell types for potential therapeutic applications and biophysical studies.
生物分子货物的可控细胞内递送对于开发靶向治疗和细胞重编程至关重要。传统的递送方法(例如,纳米载体的内吞作用、显微注射和电穿孔)通常需要耗时的摄取过程、劳动密集型操作和/或昂贵的专用设备。在此,我们提出了一种基于声流体的细胞内递送方法,该方法能够有效地将各种功能纳米材料递送至多种细胞类型(例如,贴壁和悬浮癌细胞)。通过调节玻璃毛细管中的驻波,我们的方法可以将流动中的细胞推向毛细管壁,并通过增加膜应力以通过声辐射力使细胞变形来增强膜通透性。此外,通过用包裹有货物的纳米颗粒包被毛细管,我们的方法可以实现可控的细胞-纳米颗粒接触,并促进纳米材料超越布朗运动的递送。基于这些机制,我们已成功地将负载有小分子或基于蛋白质的货物的纳米颗粒递送至U937和HeLa细胞。我们的结果表明,与不使用声流体的尝试相比,递送效率有所提高。此外,与传统的声穿孔方法相比,我们的方法不需要带有微泡的特殊造影剂。这种基于声流体的方法为实现将各种生物分子货物可控地细胞内递送至不同细胞类型以用于潜在的治疗应用和生物物理研究创造了令人兴奋的机会。