Suppr超能文献

一种用于局限性透明细胞肾细胞癌的基于预后微小RNA的特征:Bio-miR研究

A prognostic microRNA-based signature for localized clear cell renal cell carcinoma: the Bio-miR study.

作者信息

Pinto-Marín Álvaro, Trilla-Fuertes Lucía, Miranda Poma Jesús, Vasudev Naveen S, García-Fernández Eugenia, López-Vacas Rocío, Miranda Natalia, Wilson Michelle, López-Camacho Elena, Pertejo Ana, Dittmann Antje, Kunz Laura, Brown Joanne, Pedroche-Just Yaiza, Zapater-Moros Andrea, de Velasco Guillermo, Castellano Daniel, González-Peramato Pilar, Espinosa Enrique, Banks Rosamonde E, Fresno Vara Juan Ángel, Gámez-Pozo Angelo

机构信息

Medical Oncology Service, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain.

Molecular Oncology Lab, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain.

出版信息

Br J Cancer. 2025 May 7. doi: 10.1038/s41416-025-03008-2.

Abstract

BACKGROUND

Two thirds of renal cell carcinoma (RCC) patients have localized disease at diagnosis. A significant proportion of these patients will relapse. There is a need for prognostic biomarkers to improve risk-stratification and specific treatments for patients that relapse. The objective of this study is to determine the clinical utility of microRNA signatures as prognostic biomarkers in localized clear cell RCC (ccRCC) and propose new therapeutic targets in patients with a high-risk of relapse.

PATIENTS AND METHODS

The microRNA profiles from a discovery cohort of 71 T1-T2 ccRCC patients (n = 88) were analyzed using microarrays. MicroRNAs prognostic value was established, and a microRNAs signature predicting relapse for T1b-T3 disease was defined. Independent validation was carried out by qPCR in cohorts from UK (n = 75) and Spain (n = 180), and the TCGA cohort (n = 175). In the Spanish validation cohort, proteomics experiments were done. Proteins were extracted from FFPE tissue and analyzed using by data-independent acquisition mass spectrometry. Additionally, ccRCC TCGA RNA-seq data was also analyzed. Both protein and RNA-seq data was analyzed using Significance Analysis of Micorarrays (SAM) and probabilistic graphical models, which allow the identification of relevant biological processes between low and high-risk tumors.

RESULTS

A 9-microRNAs signature, Bio-miR, classified patients into low- and high-risk with disease-free survival (DFS) at 5 years of 87.12 vs. 54.17% respectively (p = 0.0086, HR = 3.58, 95%CI: 1.37-8.3). Results were confirmed in the validation cohorts with 5-year DFS rates of 94% vs. 62% in the UK cohort (HR = 7.14, p = 0.001), 82.9% vs. 58.7% in the Spanish cohort (HR = 2.46, p = 0.0013), and 5-year overall survival rates of 72.7% vs. 44.5% in the TCGA cohort (HR = 2.43, p = 0.0012). Among low-risk patients according to adjuvant immunotherapy clinical trial criteria, Bio-miR identified a high-risk group. Maybe those patients ought to be considered to receive adjuvant therapy. Proteins overexpressed in the high-risk group were mainly related to focal adhesion, serine and inositol metabolism, and angiogenesis. Probabilistic graphical models defined eight functional nodes related to specific biological processes. Differences between low- and high-risk tumors were detected in complement activation and translation functional nodes. In ccRCC TCGA cohort, 676 genes were differentially expressed between low and high-risk patients, mainly related to complement activation, adhesion, and chemokine and cytokine cascades. In this case, probabilistic graphical models defined ten functional nodes. Calcium binding, membrane, adhesion, extracellular matrix, blood microparticle, inflammatory response and immune response had higher functional node activity, and metabolism node, containing genes related to retinol and xenobiotic and CYP450 metabolism, had lower activity in the high-risk group.

CONCLUSIONS

Bio-miR dichotomizes ccRCC patients with non-metastatic disease into those with low- and high-risk of relapse. This has implications for treatment and follow-up, identifying patients most likely to benefit from adjuvant treatment in clinical trials, preventing unnecessary exposure to side-effects, and providing health economics benefits. Additionally, promising therapeutic targets, as angiogenesis, immune response, metabolism, or complement activation, were found deregulated in high-risk ccRCC patients defined by Bio-miR. These findings may be useful to select patients for tailored, molecularly-driven clinical trials. Identifying which patients with kidney cancer are most at risk of their cancer coming back after surgery is critical, so that they can be prioritized for early treatment. We have identified a combination of biomarkers present in the cancer tissue (called BiomiR) which can help to do this.

摘要

背景

三分之二的肾细胞癌(RCC)患者在诊断时患有局限性疾病。这些患者中有很大一部分会复发。需要预后生物标志物来改善风险分层,并为复发患者提供特定治疗。本研究的目的是确定微小RNA特征作为局限性透明细胞RCC(ccRCC)预后生物标志物的临床效用,并为复发高危患者提出新的治疗靶点。

患者与方法

使用微阵列分析了71例T1-T2 ccRCC患者(n = 88)的发现队列中的微小RNA谱。确定了微小RNA的预后价值,并定义了预测T1b-T3疾病复发的微小RNA特征。通过qPCR在英国队列(n = 75)、西班牙队列(n = 180)和TCGA队列(n = 175)中进行独立验证。在西班牙验证队列中进行了蛋白质组学实验。从福尔马林固定石蜡包埋(FFPE)组织中提取蛋白质,并使用数据非依赖采集质谱进行分析。此外,还分析了ccRCC TCGA RNA测序数据。蛋白质和RNA测序数据均使用微阵列显著性分析(SAM)和概率图形模型进行分析,这允许识别低风险和高风险肿瘤之间的相关生物学过程。

结果

一种9微小RNA特征Bio-miR将患者分为低风险和高风险,5年无病生存率(DFS)分别为87.12%和54.17%(p = 0.0086,HR = 3.58,95%CI:1.37-8.3)。在验证队列中得到了证实,英国队列的5年DFS率为94%对62%(HR = 7.14,p = 0.001),西班牙队列的为82.9%对58.7%(HR = 2.46,p = 0.0013),TCGA队列的5年总生存率为72.7%对44.5%(HR = 2.43,p = 0.0012)。根据辅助免疫治疗临床试验标准属于低风险的患者中,Bio-miR识别出一个高风险组。也许这些患者应该被考虑接受辅助治疗。在高风险组中过表达的蛋白质主要与粘着斑、丝氨酸和肌醇代谢以及血管生成有关。概率图形模型定义了与特定生物学过程相关的八个功能节点。在补体激活和翻译功能节点中检测到低风险和高风险肿瘤之间的差异。在ccRCC TCGA队列中,低风险和高风险患者之间有676个基因差异表达,主要与补体激活、粘附以及趋化因子和细胞因子级联反应有关。在这种情况下,概率图形模型定义了十个功能节点。钙结合、膜、粘附、细胞外基质、血液微粒、炎症反应和免疫反应具有较高的功能节点活性,而包含与视黄醇、外源性物质和CYP450代谢相关基因的代谢节点在高风险组中活性较低。

结论

Bio-miR将非转移性疾病的ccRCC患者分为复发低风险和高风险两类。这对治疗和随访有影响,可在临床试验中识别最可能从辅助治疗中获益的患者,防止不必要的副作用暴露,并提供健康经济学益处。此外,在由Bio-miR定义的高风险ccRCC患者中发现有前景的治疗靶点,如血管生成、免疫反应、代谢或补体激活,被失调。这些发现可能有助于选择患者进行量身定制的、分子驱动的临床试验。确定哪些肾癌患者术后癌症复发风险最高至关重要,以便他们能被优先进行早期治疗。我们已经确定了癌症组织中存在的一种生物标志物组合(称为BiomiR),它有助于做到这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验