Suppr超能文献

一种结合传统放射组学和深度学习特征的综合模型用于预测适合根治性消融的肝细胞癌早期复发:一项多中心队列研究。

An Integrated Model Combined Conventional Radiomics and Deep Learning Features to Predict Early Recurrence of Hepatocellular Carcinoma Eligible for Curative Ablation: A Multicenter Cohort Study.

作者信息

Li Yong-Hai, Qian Gui-Xiang, Zhu Yu, Lei Xue-di, Tang Lei, Bu Xiang-Yi, Wei Ming-Tong, Jia Wei-Dong

机构信息

Cheeloo College of Medicine, Shandong University, Shandong.

The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China.

出版信息

J Comput Assist Tomogr. 2025 May 6. doi: 10.1097/RCT.0000000000001764.

Abstract

OBJECTIVE

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Ablation therapy is one of the first-line treatments for early HCC. Accurately predicting early recurrence (ER) is crucial for making precise treatment plans and improving prognosis. This study aimed to develop and validate a model (DLRR) that incorporates deep learning radiomics and traditional radiomics features to predict ER following curative ablation for HCC.

METHODS

We retrospectively analysed the data of 288 eligible patients from 3 hospitals-1 primary cohort (center 1, n=222) and 2 external test cohorts (center 2, n=32 and center 3, n=34)-from April 2008 to March 2022. 3D ResNet-18 and PyRadiomics were applied to extract features from contrast-enhanced computed tomography (CECT) images. The 3-step (ICC-LASSO-RFE) method was used for feature selection, and 6 machine learning methods were used to construct models. Performance was compared through the area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices. Calibration and clinical applicability were assessed through calibration curves and decision curve analysis (DCA), respectively. Kaplan-Meier (K-M) curves were generated to stratify patients based on progression-free survival (PFS) and overall survival (OS).

RESULTS

The DLRR model had the best performance, with AUCs of 0.981, 0.910, and 0.851 in the training, internal validation, and external validation sets, respectively. In addition, the calibration curve and DCA curve revealed that the DLRR model had good calibration ability and clinical applicability. The K-M curve indicated that the DLRR model provided risk stratification for progression-free survival (PFS) and overall survival (OS) in HCC patients.

CONCLUSIONS

The DLRR model noninvasively and efficiently predicts ER after curative ablation in HCC patients, which helps to categorize the risk in patients to formulate precise diagnosis and treatment plans and management strategies for patients and to improve the prognosis.

摘要

目的

肝细胞癌(HCC)是最常见的原发性肝脏恶性肿瘤。消融治疗是早期HCC的一线治疗方法之一。准确预测早期复发(ER)对于制定精确的治疗方案和改善预后至关重要。本研究旨在开发并验证一种整合深度学习放射组学和传统放射组学特征的模型(DLRR),以预测HCC根治性消融后的ER。

方法

我们回顾性分析了2008年4月至2022年3月期间来自3家医院的288例符合条件患者的数据——1个主要队列(中心1,n = 222)和2个外部测试队列(中心2,n = 32和中心3,n = 34)。应用3D ResNet - 18和PyRadiomics从对比增强计算机断层扫描(CECT)图像中提取特征。采用三步法(ICC - LASSO - RFE)进行特征选择,并使用6种机器学习方法构建模型。通过受试者操作特征曲线下面积(AUC)、净重新分类改善(NRI)和综合判别改善(IDI)指标比较性能。分别通过校准曲线和决策曲线分析(DCA)评估校准和临床适用性。生成Kaplan - Meier(K - M)曲线,根据无进展生存期(PFS)和总生存期(OS)对患者进行分层。

结果

DLRR模型表现最佳,在训练集、内部验证集和外部验证集中的AUC分别为0.981、0.910和0.851。此外,校准曲线和DCA曲线显示DLRR模型具有良好的校准能力和临床适用性。K - M曲线表明DLRR模型为HCC患者的无进展生存期(PFS)和总生存期(OS)提供了风险分层。

结论

DLRR模型可无创且有效地预测HCC患者根治性消融后的ER,有助于对患者风险进行分类,为患者制定精确的诊断和治疗方案及管理策略,并改善预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验