Nguyen Mai Hanh, Le Minh Huu Nhat, Bui Anh Tuan, Le Nguyen Quoc Khanh
International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Pathology and Forensic Medicine Department, 103 Military Hospital, Hanoi, Vietnam; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan.
International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan.
Lung Cancer. 2025 Jun;204:108577. doi: 10.1016/j.lungcan.2025.108577. Epub 2025 May 4.
Epidermal growth factor receptor (EGFR) mutations play a pivotal role in guiding targeted therapy for lung cancer, making their accurate detection essential for personalized treatment. Recently, artificial intelligence (AI) has emerged as a promising tool for identifying EGFR mutation status from digital pathology images. This systematic review and meta-analysis evaluate the diagnostic accuracy of AI models in predicting EGFR mutations from whole slide images (WSIs) in lung cancer patients.
A comprehensive search was conducted across four databases (EMBASE, PubMed, Web of Science, and Scopus) for studies published up to June 20th, 2024. Studies employing AI algorithms, including machine learning and deep learning techniques, to predict EGFR mutations from digital pathology images were included. The risk of bias and applicability concerns were assessed using the QUADAS-AI tool. Diagnostic accuracy metrics such as sensitivity, specificity, and the Area Under the Curve (AUC) were extracted. Random-effects models were applied to synthesize the AI model performance. This study is registered with PROSPERO (CRD42024570496).
Out of 1,828 identified studies, 16 met the inclusion criteria, with 4 eligible for meta-analysis. The pooled results demonstrated that AI algorithms achieved an AUC of 0.756 (95% CI: 0.669-0.824), a sensitivity of 66.3% (95% CI: X-Y), and a specificity of 68.1% (95% CI: X-Y). Subgroup analyses revealed that AI models using in-house datasets, surgical resection samples, the ResNet architecture, and tumor-focused regions exhibited improved predictive performance.
AI models exhibit potential for non-invasive prediction of EGFR mutations in lung cancer patients using WSIs, although current accuracy and precision warrant further refinement. Future research should aim to enhance AI algorithms, validate findings on larger datasets, and integrate these tools into clinical workflows to optimize lung cancer management.
表皮生长因子受体(EGFR)突变在指导肺癌靶向治疗中起着关键作用,因此准确检测EGFR突变对于个性化治疗至关重要。近年来,人工智能(AI)已成为从数字病理图像中识别EGFR突变状态的一种有前景的工具。本系统评价和荟萃分析评估了AI模型从肺癌患者全切片图像(WSIs)预测EGFR突变的诊断准确性。
对四个数据库(EMBASE、PubMed、Web of Science和Scopus)进行全面检索,以查找截至2024年6月20日发表的研究。纳入使用AI算法(包括机器学习和深度学习技术)从数字病理图像预测EGFR突变的研究。使用QUADAS-AI工具评估偏倚风险和适用性问题。提取诊断准确性指标,如敏感性、特异性和曲线下面积(AUC)。应用随机效应模型综合AI模型性能。本研究已在PROSPERO注册(CRD42024570496)。
在1828项已识别的研究中,16项符合纳入标准,4项符合荟萃分析条件。汇总结果表明,AI算法的AUC为0.756(95%CI:0.669-0.824),敏感性为66.3%(95%CI:X-Y),特异性为68.1%(95%CI:X-Y)。亚组分析显示,使用内部数据集、手术切除样本、ResNet架构和肿瘤聚焦区域的AI模型表现出更好的预测性能。
AI模型在使用WSIs对肺癌患者进行EGFR突变的无创预测方面具有潜力,尽管目前的准确性和精确性仍需进一步提高。未来的研究应旨在改进AI算法,在更大的数据集上验证研究结果,并将这些工具整合到临床工作流程中,以优化肺癌管理。