Suppr超能文献

使用扫描电子显微镜和机器学习对人类慢性伤口生物膜感染进行SEMTWIST量化

SEMTWIST Quantification of Biofilm Infection in Human Chronic Wound Using Scanning Electron Microscopy and Machine Learning.

作者信息

Singh Surabhi, Muniz De Oliveira Fabio, Wang Cong, Kumar Manoj, Xuan Yi, DeMazumder Deeptankar, Sen Chandan K, Roy Sashwati

机构信息

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Adv Wound Care (New Rochelle). 2025 Aug;14(8):393-408. doi: 10.1089/wound.2024.0291. Epub 2025 May 13.

Abstract

To develop scanning electron microscopy-based Trainable Weka (Waikato Environment for Knowledge Analysis) Intelligent Segmentation Technology (SEMTWIST), an open-source software tool, for structural detection and rigorous quantification of wound biofilm aggregates in complex human wound tissue matrix. SEMTWIST model was standardized to quantify biofilm infection (BFI) abundance in 240 distinct SEM images from 60 human chronic wound-edge biospecimens (four technical replicates of each specimen). Results from SEMTWIST were compared against human expert assessments and the gold standard for molecular BFI detection, that is, peptide nucleic acid fluorescence hybridization (PNA-FISH). Correlation and Bland-Altman plot demonstrated a robust correlation ( = 0.82, < 0.01), with a mean bias of 1.25, and 95% limit of agreement ranging from -43.40 to 47.11, between SEMTWIST result and the average scores assigned by trained human experts. While interexpert variability highlighted potential bias in manual assessments, SEMTWIST provided consistent results. Bacterial culture detected infection but not biofilm aggregates. Whereas the wheat germ agglutinin staining exhibited nonspecific staining of host tissue components and failed to provide a specific identification of BFI. The molecular identification of biofilm aggregates using PNA-FISH was comparable with SEMTWIST, highlighting the robustness of the developed approach. This study introduces a novel approach "SEMTWIST" for in-depth analysis and precise differentiation of biofilm aggregates from host tissue elements, enabling accurate quantification of BFI in chronic wound SEM images. Open-source SEMTWIST offers a reliable and robust framework for standardized quantification of BFI burden in human chronic wound-edge tissues, supporting clinical diagnosis and guiding treatment.

摘要

为开发基于扫描电子显微镜的可训练怀卡托知识分析环境(Waikato Environment for Knowledge Analysis,Weka)智能分割技术(scanning electron microscopy-based Trainable Weka Intelligent Segmentation Technology,SEMTWIST),一种开源软件工具,用于在复杂的人类伤口组织基质中对伤口生物膜聚集体进行结构检测和精确量化。对SEMTWIST模型进行标准化,以量化来自60个人类慢性伤口边缘生物标本(每个标本4个技术重复)的240张不同扫描电子显微镜(SEM)图像中的生物膜感染(biofilm infection,BFI)丰度。将SEMTWIST的结果与人类专家评估以及分子BFI检测的金标准即肽核酸荧光杂交(peptide nucleic acid fluorescence hybridization,PNA-FISH)进行比较。相关性分析和布兰德-奥特曼图(Bland-Altman plot)显示,SEMTWIST结果与训练有素的人类专家给出的平均分数之间存在强相关性(r = 0.82,P < 0.01),平均偏差为1.25,95%一致性界限为-43.40至47.11。虽然专家间的变异性突出了手动评估中的潜在偏差,但SEMTWIST提供了一致的结果。细菌培养检测到感染,但未检测到生物膜聚集体。而麦胚凝集素染色显示宿主组织成分存在非特异性染色,未能提供BFI的特异性鉴定。使用PNA-FISH对生物膜聚集体进行分子鉴定与SEMTWIST相当,突出了所开发方法的稳健性。本研究引入了一种新方法“SEMTWIST”,用于从宿主组织成分中深入分析和精确区分生物膜聚集体,从而能够在慢性伤口SEM图像中准确量化BFI。开源的SEMTWIST为人类慢性伤口边缘组织中BFI负荷的标准化量化提供了一个可靠且稳健的框架,支持临床诊断并指导治疗。

相似文献

1
SEMTWIST Quantification of Biofilm Infection in Human Chronic Wound Using Scanning Electron Microscopy and Machine Learning.
Adv Wound Care (New Rochelle). 2025 Aug;14(8):393-408. doi: 10.1089/wound.2024.0291. Epub 2025 May 13.
2
Negative pressure wound therapy for open traumatic wounds.
Cochrane Database Syst Rev. 2018 Jul 3;7(7):CD012522. doi: 10.1002/14651858.CD012522.pub2.
4
Silk-Ovarioids: establishment and characterization of a human ovarian primary cell 3D-model system.
Hum Reprod Open. 2025 Jul 10;2025(3):hoaf042. doi: 10.1093/hropen/hoaf042. eCollection 2025.
7
The measurement and monitoring of surgical adverse events.
Health Technol Assess. 2001;5(22):1-194. doi: 10.3310/hta5220.
8
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
10
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.

本文引用的文献

3
The influence of sepsis on erythrocytes morphology: case report and literature review.
Rom J Morphol Embryol. 2024 Jan-Mar;65(1):119-123. doi: 10.47162/RJME.65.1.15.
4
Performance evaluation of automated scoring for the descriptive similarity response task.
Sci Rep. 2024 Mar 14;14(1):6228. doi: 10.1038/s41598-024-56743-6.
5
Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches.
Biology (Basel). 2024 Feb 9;13(2):109. doi: 10.3390/biology13020109.
6
Biofilm therapy for chronic wounds.
Int Wound J. 2024 Feb;21(2):e14667. doi: 10.1111/iwj.14667.
7
Strategies for combating antibiotic resistance in bacterial biofilms.
Front Cell Infect Microbiol. 2024 Jan 19;14:1352273. doi: 10.3389/fcimb.2024.1352273. eCollection 2024.
8
Csu pili dependent biofilm formation and virulence of Acinetobacter baumannii.
NPJ Biofilms Microbiomes. 2023 Dec 14;9(1):101. doi: 10.1038/s41522-023-00465-6.
9
Biofilm-derived oxylipin 10-HOME-mediated immune response in women with breast implants.
J Clin Invest. 2023 Nov 30;134(3):e165644. doi: 10.1172/JCI165644.
10
Human Wound and Its Burden: Updated 2022 Compendium of Estimates.
Adv Wound Care (New Rochelle). 2023 Dec;12(12):657-670. doi: 10.1089/wound.2023.0150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验