Zhang Zhanlin, Wei Kun, Meng Jie, Wei Junwu, Su Yupeng, Tan Huan, Li Xiaohong
Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
Irradiation Preservation and Effect Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610051, P. R. China.
Adv Healthc Mater. 2025 Jun;14(16):e2501280. doi: 10.1002/adhm.202501280. Epub 2025 May 13.
Piezoelectrodynamic therapy (PEDT) is compromised by hypoxia dilemma of tumors, while starvation therapy is constrained by insufficient enzyme activities. To address these challenges, Janus piezoelectric nanoparticles (NPs) are proposed to spatially immobilize glucose oxidase (GOx) and catalase (CAT), enabling piezoelectric potential-amplified enzyme activities and synergistic PEDT-starvation tumor therapy. Here hollow barium titanate (hBT) NPs are synthesized using SiO templates, followed by partial Au deposition via the Pickering emulsion-masking method to create Janus hBT@Au NPs, which are then conjugated with GOx and CAT on opposing sides to yield C-hBT@Au-G NPs. The hollow structure of hBT enhances flexibility and deformation under ultrasonication, while Schottky heterojunctions with Au layers promote charge carrier transfer, amplifying piezoelectric effects and free electron transfer to boost GOx activities. Piezoelectric field-enhances selective tumor cell internalization of NPs and PEDT generation of reactive oxygen species (ROS), coupled with self-propagated GOx/CAT cascades, intensify tumor cytotoxicities and deplete intracellular adenosine triphosphate. The Janus architecture, ultrasonic cavitation, and O generation collaboratively drive robust propulsion for efficient NP accumulation and deep ROS penetration into tumor tissues, thereby achieving full tumor suppression with negligible systemic toxicity. This design overcomes delivery barriers of tumor accumulation, intratumoral penetration, and cellular uptake and synergizes PEDT-starvation tumor therapy.
压电动力疗法(PEDT)受肿瘤缺氧困境的影响,而饥饿疗法则受酶活性不足的限制。为应对这些挑战,人们提出了双面压电纳米颗粒(NPs),以在空间上固定葡萄糖氧化酶(GOx)和过氧化氢酶(CAT),实现压电势放大的酶活性以及PEDT-饥饿协同肿瘤治疗。在此,使用SiO模板合成中空钛酸钡(hBT)纳米颗粒,然后通过皮克林乳液掩膜法进行部分金沉积,以制备双面hBT@Au纳米颗粒,随后在相对的两侧将其与GOx和CAT共轭,得到C-hBT@Au-G纳米颗粒。hBT的中空结构增强了超声作用下的柔韧性和变形能力,而与金层形成的肖特基异质结促进了电荷载流子转移,放大了压电效应和自由电子转移,从而提高GOx活性。压电场增强了纳米颗粒对肿瘤细胞的选择性内化以及PEDT诱导的活性氧(ROS)生成,再加上自我传播的GOx/CAT级联反应,增强了肿瘤细胞毒性并消耗了细胞内三磷酸腺苷。双面结构、超声空化和O生成协同驱动强大的推进作用,使纳米颗粒有效积累并使ROS深入渗透到肿瘤组织中,从而实现完全抑制肿瘤且全身毒性可忽略不计。这种设计克服了肿瘤积累、瘤内渗透和细胞摄取的递送障碍,并使PEDT-饥饿协同肿瘤治疗发挥作用。