Suppr超能文献

以及二氮烯基化合物作为抗菌剂的评估。

and evaluation of diazenyl compounds as anti-bacterial agents.

作者信息

Tiwari Shweta, Fatima Gul Naz, Kumar Vimlesh, Saraf Shailendra K

机构信息

Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow, India.

出版信息

Future Med Chem. 2025 May;17(9):1013-1022. doi: 10.1080/17568919.2025.2504319. Epub 2025 May 15.

Abstract

AIM

The diazenyls are interesting scaffold in medicinal chemistry displaying a wide range of pharmacological activities including anti-microbial, anti-cancer, anti-inflammatory, and analgesic-antipyretic, among others. These diverse attributes have reinitiated the interest of the researchers in them. Studies suggest that incorporating heterocyclic ring system into diazenyl scaffold helps to improve the biological property of the drug-like substances. The present study aims to synthesize novel diazinyl-triazole adducts, with an intent to obtain compounds with enhanced anti-bacterial potential.

MATERIALS AND METHODS

All synthesized compounds were characterized using physicochemical methods and spectroscopic techniques. The compounds were evaluated against two Gram-positive and two Gram-negative bacterial strains, demonstrating good to moderate efficacy. prediction study was also carried out for the synthesized series of compounds.

RESULTS AND CONCLUSION

The molecular docking data are aligned with the experimental results. The ADMET predictions suggested the compounds are both efficacious and safe. The study presents new compounds as potential anti-bacterial agents with desirable pharmacological profile.

摘要

目的

重氮基在药物化学领域是一种有趣的骨架结构,具有广泛的药理活性,包括抗菌、抗癌、抗炎以及解热镇痛等。这些多样的特性重新引发了研究人员对它们的兴趣。研究表明,将杂环体系引入重氮基骨架有助于改善类药物物质的生物学性质。本研究旨在合成新型二嗪基 - 三唑加合物,以期获得具有增强抗菌潜力的化合物。

材料与方法

所有合成的化合物均采用物理化学方法和光谱技术进行表征。这些化合物针对两种革兰氏阳性菌和两种革兰氏阴性菌菌株进行了评估,显示出良好至中等的疗效。还对合成的一系列化合物进行了预测研究。

结果与结论

分子对接数据与实验结果一致。ADMET预测表明这些化合物既有效又安全。该研究提出了具有理想药理特性的新型潜在抗菌剂化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验