Suppr超能文献

支气管镜检查中基于视觉的自动辅助工具:狭窄严重程度评估

Automated vision-based assistance tools in bronchoscopy: stenosis severity estimation.

作者信息

Tomasini Clara, Rodriguez-Puigvert Javier, Polanco Dinora, Viñuales Manuel, Riazuelo Luis, Murillo Ana C

机构信息

DIIS, i3A. Universidad de Zaragoza, Zaragoza, Spain.

Hospital Universitario Miguel Servet, Zaragoza, Spain.

出版信息

Int J Comput Assist Radiol Surg. 2025 May 15. doi: 10.1007/s11548-025-03398-x.

Abstract

PURPOSE

Subglottic stenosis refers to the narrowing of the subglottis, the airway between the vocal cords and the trachea. Its severity is typically evaluated by estimating the percentage of obstructed airway. This estimation can be obtained from CT data or through visual inspection by experts exploring the region. However, visual inspections are inherently subjective, leading to less consistent and robust diagnoses. No public methods or datasets are currently available for automated evaluation of this condition from bronchoscopy video.

METHODS

We propose a pipeline for automated subglottic stenosis severity estimation during the bronchoscopy exploration, without requiring the physician to traverse the stenosed region. Our approach exploits the physical effect of illumination decline in endoscopy to segment and track the lumen and obtain a 3D model of the airway. This 3D model is obtained from a single frame and is used to measure the airway narrowing.

RESULTS

Our pipeline is the first to enable automated and robust subglottic stenosis severity measurement using bronchoscopy images. The results show consistency with ground-truth estimations from CT scans and expert estimations and reliable repeatability across multiple estimations on the same patient. Our evaluation is performed on our new Subglottic Stenosis Dataset of real bronchoscopy procedures data.

CONCLUSION

We demonstrate how to automate evaluation of subglottic stenosis severity using only bronchoscopy. Our approach can assist with and shorten diagnosis and monitoring procedures, with automated and repeatable estimations and less exploration time, and save radiation exposure to patients as no CT is required. Additionally, we release the first public benchmark for subglottic stenosis severity assessment.

摘要

目的

声门下狭窄是指声门下区域(声带与气管之间的气道)变窄。其严重程度通常通过估计气道阻塞百分比来评估。该估计可从CT数据中获取,或由专家通过对该区域的目视检查获得。然而,目视检查本质上是主观的,导致诊断的一致性和可靠性较低。目前尚无公开的方法或数据集可用于从支气管镜视频中自动评估这种情况。

方法

我们提出了一种在支气管镜检查过程中自动估计声门下狭窄严重程度的流程,无需医生穿过狭窄区域。我们的方法利用了内窥镜检查中光照衰减的物理效应来分割和跟踪管腔,并获得气道的三维模型。这个三维模型从单帧图像中获取,并用于测量气道狭窄程度。

结果

我们的流程是首个能够使用支气管镜图像自动且可靠地测量声门下狭窄严重程度的方法。结果表明,该方法与CT扫描的真实估计以及专家估计一致,并且在对同一患者的多次估计中具有可靠的可重复性。我们的评估是在我们新的真实支气管镜检查程序数据的声门下狭窄数据集中进行的。

结论

我们展示了如何仅使用支气管镜自动评估声门下狭窄的严重程度。我们的方法可以辅助并缩短诊断和监测程序,实现自动且可重复的估计,减少探查时间,并且由于无需CT检查,还能减少患者的辐射暴露。此外,我们发布了首个用于声门下狭窄严重程度评估的公开基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验