Liu Tianyu, Chu Tinyi, Luo Xiao, Zhao Hongyu
Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA.
Department of Biostatistics, Yale University, New Haven, CT, USA.
Nat Commun. 2025 May 15;16(1):4537. doi: 10.1038/s41467-025-59822-y.
Drug synergy prediction is a challenging and important task in the treatment of complex diseases including cancer. In this manuscript, we present a unified Model, known as BAITSAO, for tasks related to drug synergy prediction with a unified pipeline to handle different datasets. We construct the training datasets for BAITSAO based on the context-enriched embeddings from Large Language Models for the initial representation of drugs and cell lines. After demonstrating the relevance of these embeddings, we pre-train BAITSAO with a large-scale drug synergy database under a multi-task learning framework with rigorous selections of tasks. We demonstrate the superiority of the model architecture and the pre-trained strategies of BAITSAO over other methods through comprehensive benchmark analysis. Moreover, we investigate the sensitivity of BAITSAO and illustrate its promising functions including drug discoveries, drug combinations-gene interaction, and multi-drug synergy predictions.
药物协同作用预测是治疗包括癌症在内的复杂疾病中的一项具有挑战性且重要的任务。在本论文中,我们提出了一个统一的模型,称为BAITSAO,用于与药物协同作用预测相关的任务,并通过统一的流程来处理不同的数据集。我们基于来自大语言模型的上下文丰富嵌入构建BAITSAO的训练数据集,用于药物和细胞系的初始表示。在证明这些嵌入的相关性之后,我们在多任务学习框架下,通过严格选择任务,使用大规模药物协同作用数据库对BAITSAO进行预训练。通过全面的基准分析,我们证明了BAITSAO的模型架构和预训练策略优于其他方法。此外,我们研究了BAITSAO的敏感性,并说明了它的一些有前景的功能,包括药物发现、药物组合-基因相互作用以及多药物协同作用预测。