Suppr超能文献

一种使用友好模式的可解释脑电图癫痫检测模型。

An explainable EEG epilepsy detection model using friend pattern.

作者信息

Tuncer Turker, Dogan Sengul

机构信息

Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, 23119, Turkey.

出版信息

Sci Rep. 2025 May 15;15(1):16951. doi: 10.1038/s41598-025-01747-z.

Abstract

The electroencephalography (EEG) signals are very important for obtaining information from the brain, and EEG signals are one of the cheapest methods to gather information from the brain. EEG signals have commonly been used to detect epilepsy. Therefore, the main objective of this research is to demonstrate the epilepsy detection capability of the presented new-generation relation-centric feature extraction function. In this research, we have presented a new-generation EEG signal classification model, and this model is an explainable feature engineering (XFE) model. To present this XFE model, a feature extraction function, termed friend pattern (FriendPat), has been introduced. The presented FriendPat is a distance- and voting-based feature extraction function. By deploying the introduced FriendPat, features have been extracted. The generated features have been selected using a cumulative and iterative feature selector, and the selected features have been classified using a t algorithm-based k-nearest neighbors (tkNN) classifier. By using channel information and Directed Lobish's (DLob) look-up table based on the brain cap used, DLob symbols have been generated, and these symbols create the DLob string for artifact classification. By using this generated DLob string and statistical analysis, explainable results have been obtained. To investigate the classification performance of the presented FriendPat XFE model, we have used a publicly available EEG epilepsy detection dataset. The presented model attained 99.61% and 79.92% classification accuracies using 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV, respectively. This XFE model generates a connectome diagram for epilepsy detection.

摘要

脑电图(EEG)信号对于从大脑获取信息非常重要,并且EEG信号是从大脑收集信息的最便宜方法之一。EEG信号通常已被用于检测癫痫。因此,本研究的主要目的是展示所提出的新一代以关系为中心的特征提取函数的癫痫检测能力。在本研究中,我们提出了一种新一代EEG信号分类模型,该模型是一种可解释的特征工程(XFE)模型。为了呈现这个XFE模型,引入了一种称为朋友模式(FriendPat)的特征提取函数。所提出的FriendPat是一种基于距离和投票的特征提取函数。通过部署引入的FriendPat,提取了特征。使用累积和迭代特征选择器选择生成的特征,并使用基于t算法的k近邻(tkNN)分类器对所选特征进行分类。通过使用通道信息和基于所用脑帽的Directed Lobish(DLob)查找表,生成了DLob符号,这些符号创建了用于伪迹分类的DLob字符串。通过使用这个生成的DLob字符串和统计分析,获得了可解释的结果。为了研究所提出的FriendPat XFE模型的分类性能,我们使用了一个公开可用的EEG癫痫检测数据集。所提出的模型在使用10折交叉验证(CV)和留一受试者出(LOSO)CV时分别达到了99.61%和79.92%的分类准确率。这个XFE模型生成了用于癫痫检测的连接组图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f95f/12081915/f6c947e05c89/41598_2025_1747_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验