Suppr超能文献

膜活性肽的选择性:静电作用及其他膜生物物理性质的作用

Selectivity of membrane-active peptides: the role of electrostatics and other membrane biophysical properties.

作者信息

Felsztyna Iván, Galassi Vanesa V, Wilke Natalia

机构信息

Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA Córdoba Argentina.

Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA Córdoba Argentina.

出版信息

Biophys Rev. 2025 Apr 10;17(2):591-604. doi: 10.1007/s12551-025-01309-7. eCollection 2025 Apr.

Abstract

UNLABELLED

Membrane-active peptides (MAPs) are versatile molecules that interact with lipid bilayers, facilitating processes such as antimicrobial defense, anticancer activity, and membrane translocation. Given that most MAPs are cationic, their selectivity for specific cell membranes has traditionally been attributed to variations in membrane surface charge. However, growing evidence suggests that electrostatics alone cannot fully explain MAPs selectivity. Instead, MAPs activity is also strongly influenced by other membrane biophysical properties, such as lipid packing, phase state, curvature, and the spatial distribution of hydrophobic and charged residues within the peptide sequence. In this review, we summarize the current knowledge on the biophysical determinants of MAPs selectivity. We begin by examining membrane and cell surface electrostatics and their influence on MAPs-membrane interactions, including electrostatically driven peptide conformational changes and lipid recruitment. We then broaden the discussion to include non-electrostatic factors, such as membrane curvature and rheology, which are primarily influenced by sterol or hopanoid content, as well as acyl chain unsaturation and branching. Together, these processes highlight that MAPs selectivity is not governed by any single membrane property but instead emerges from a synergistic interplay of electrostatic, hydrophobic, and topological factors.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12551-025-01309-7.

摘要

未标注

膜活性肽(MAPs)是一类多功能分子,可与脂质双层相互作用,促进抗菌防御、抗癌活性和膜转运等过程。鉴于大多数MAPs是阳离子性的,它们对特定细胞膜的选择性传统上归因于膜表面电荷的变化。然而,越来越多的证据表明,仅靠静电作用无法完全解释MAPs的选择性。相反,MAPs的活性还受到其他膜生物物理特性的强烈影响,如脂质堆积、相态、曲率以及肽序列中疏水和带电残基的空间分布。在本综述中,我们总结了关于MAPs选择性的生物物理决定因素的当前知识。我们首先研究膜和细胞表面静电及其对MAPs - 膜相互作用的影响,包括静电驱动的肽构象变化和脂质募集。然后我们将讨论范围扩大到包括非静电因素,如膜曲率和流变学,这些主要受甾醇或藿烷类含量以及酰基链不饱和度和分支的影响。总之,这些过程突出表明,MAPs的选择性并非由任何单一的膜特性决定,而是由静电、疏水和拓扑因素的协同相互作用产生的。

补充信息

在线版本包含可在10.1007/s12551 - 025 - 01309 - 7获取的补充材料。

相似文献

1
Selectivity of membrane-active peptides: the role of electrostatics and other membrane biophysical properties.
Biophys Rev. 2025 Apr 10;17(2):591-604. doi: 10.1007/s12551-025-01309-7. eCollection 2025 Apr.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
5
Psychological interventions for adults who have sexually offended or are at risk of offending.
Cochrane Database Syst Rev. 2012 Dec 12;12(12):CD007507. doi: 10.1002/14651858.CD007507.pub2.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
8
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

本文引用的文献

2
Antimicrobial Peptides Increase Line Tension in Raft-Forming Lipid Membranes.
J Am Chem Soc. 2024 Jul 31;146(30):20891-20903. doi: 10.1021/jacs.4c05377. Epub 2024 Jul 17.
3
Enhanced Adsorption Response of pH-Sensitive Peptides: The Role of Membrane Acidity.
J Phys Chem B. 2024 May 9;128(18):4396-4403. doi: 10.1021/acs.jpcb.4c01785. Epub 2024 Apr 26.
4
Phosphatidylserine externalization as immune checkpoint in cancer.
Pflugers Arch. 2024 Dec;476(12):1789-1802. doi: 10.1007/s00424-024-02948-7. Epub 2024 Apr 4.
5
The cellular zeta potential: cell electrophysiology beyond the membrane.
Integr Biol (Camb). 2024 Jan 23;16. doi: 10.1093/intbio/zyae003.
6
Electrostatic switch mechanisms of membrane protein trafficking and regulation.
Biophys Rev. 2023 Dec 6;15(6):1967-1985. doi: 10.1007/s12551-023-01166-2. eCollection 2023 Dec.
7
The Mechanism of Antimicrobial Small-Cationic Peptides from Coarse-Grained Simulations.
J Chem Inf Model. 2023 Nov 13;63(21):6877-6889. doi: 10.1021/acs.jcim.3c01348. Epub 2023 Oct 31.
8
Membrane-Active Peptides and Their Potential Biomedical Application.
Pharmaceutics. 2023 Aug 6;15(8):2091. doi: 10.3390/pharmaceutics15082091.
9
The antimicrobial peptide Polybia-MP1 differentiates membranes with the hopanoid, diplopterol from those with cholesterol.
BBA Adv. 2021 Jan 30;1:100002. doi: 10.1016/j.bbadva.2021.100002. eCollection 2021.
10
Molecular dynamics simulation of an entire cell.
Front Chem. 2023 Jan 18;11:1106495. doi: 10.3389/fchem.2023.1106495. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验