Felsztyna Iván, Galassi Vanesa V, Wilke Natalia
Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA Córdoba Argentina.
Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA Córdoba Argentina.
Biophys Rev. 2025 Apr 10;17(2):591-604. doi: 10.1007/s12551-025-01309-7. eCollection 2025 Apr.
Membrane-active peptides (MAPs) are versatile molecules that interact with lipid bilayers, facilitating processes such as antimicrobial defense, anticancer activity, and membrane translocation. Given that most MAPs are cationic, their selectivity for specific cell membranes has traditionally been attributed to variations in membrane surface charge. However, growing evidence suggests that electrostatics alone cannot fully explain MAPs selectivity. Instead, MAPs activity is also strongly influenced by other membrane biophysical properties, such as lipid packing, phase state, curvature, and the spatial distribution of hydrophobic and charged residues within the peptide sequence. In this review, we summarize the current knowledge on the biophysical determinants of MAPs selectivity. We begin by examining membrane and cell surface electrostatics and their influence on MAPs-membrane interactions, including electrostatically driven peptide conformational changes and lipid recruitment. We then broaden the discussion to include non-electrostatic factors, such as membrane curvature and rheology, which are primarily influenced by sterol or hopanoid content, as well as acyl chain unsaturation and branching. Together, these processes highlight that MAPs selectivity is not governed by any single membrane property but instead emerges from a synergistic interplay of electrostatic, hydrophobic, and topological factors.
The online version contains supplementary material available at 10.1007/s12551-025-01309-7.
膜活性肽(MAPs)是一类多功能分子,可与脂质双层相互作用,促进抗菌防御、抗癌活性和膜转运等过程。鉴于大多数MAPs是阳离子性的,它们对特定细胞膜的选择性传统上归因于膜表面电荷的变化。然而,越来越多的证据表明,仅靠静电作用无法完全解释MAPs的选择性。相反,MAPs的活性还受到其他膜生物物理特性的强烈影响,如脂质堆积、相态、曲率以及肽序列中疏水和带电残基的空间分布。在本综述中,我们总结了关于MAPs选择性的生物物理决定因素的当前知识。我们首先研究膜和细胞表面静电及其对MAPs - 膜相互作用的影响,包括静电驱动的肽构象变化和脂质募集。然后我们将讨论范围扩大到包括非静电因素,如膜曲率和流变学,这些主要受甾醇或藿烷类含量以及酰基链不饱和度和分支的影响。总之,这些过程突出表明,MAPs的选择性并非由任何单一的膜特性决定,而是由静电、疏水和拓扑因素的协同相互作用产生的。
在线版本包含可在10.1007/s12551 - 025 - 01309 - 7获取的补充材料。