Suppr超能文献

疾病相关突变体揭示小热休克蛋白HSPB5的激活机制

Activation mechanism of small heat shock protein HSPB5 revealed by disease-associated mutants.

作者信息

Woods Christopher N, Janowska Maria K, Ulmer Lindsey D, Kaur Sidhu Jasleen, Stone Natalie L, James Ellie I, Guttman Miklos, Bush Matthew F, Klevit Rachel E

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98195.

Department of Chemistry, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2425061122. doi: 10.1073/pnas.2425061122. Epub 2025 May 16.

Abstract

Found from bacteria to humans, small heat shock proteins (sHSPs) are the least understood protein chaperones. HSPB5 (or αB-crystallin) is among the most widely expressed of the 10 human sHSPs, including in muscle, brain, and eye lens where it is constitutively present at high levels. A high content of disorder in HSPB5 has stymied efforts to uncover how its structure gives rise to function. To uncover its mechanisms of action, we compared human HSPB5 and two disease-associated mutants, R120G and D109H. Expecting to learn how the mutations lead to loss of function, we found instead that the mutants are constitutively activated chaperones while wild-type HSPB5 can transition reversibly between nonactivated (low activity) and activated (high activity) states in response to changing conditions. Techniques that provide information regarding interactions and accessibility of disordered regions revealed that the disordered N-terminal regions (NTR) that are required for chaperone activity exist in a complicated interaction network within HSPB5 oligomers and are sequestered from solvent in nonactivated states. Either mutation or an activating pH change causes rearrangements in the network that expose parts of the NTR, making them more available to bind an aggregating client. Although beneficial in the short-term, failure of the mutants to adopt a state with lower activity and lower NTR accessibility leads to increased coaggregation propensity and, presumably, early cataract. The results support a model where chaperone activity and solubility are modulated through the quasi-ordered NTR and its multiple competing interactions.

摘要

从小分子热休克蛋白(sHSPs)在细菌到人类中的发现以来,它们是最不为人所了解的蛋白质伴侣。HSPB5(或αB-晶状体蛋白)是人类10种sHSPs中表达最广泛的之一,包括在肌肉、大脑和晶状体中,它在这些组织中持续高水平存在。HSPB5中高度的无序性阻碍了人们揭示其结构如何产生功能的努力。为了揭示其作用机制,我们比较了人类HSPB5和两个与疾病相关的突变体R120G和D109H。我们原本期望了解这些突变如何导致功能丧失,然而却发现这些突变体是组成型激活的伴侣蛋白,而野生型HSPB5可以根据环境变化在非激活(低活性)和激活(高活性)状态之间可逆地转变。提供有关无序区域相互作用和可及性信息的技术表明,伴侣蛋白活性所需的无序N端区域(NTR)存在于HSPB5寡聚体的复杂相互作用网络中,并且在非激活状态下与溶剂隔离。突变或激活pH的变化都会导致网络重排,使NTR的部分区域暴露,从而使其更易于结合聚集的客户蛋白。虽然这些突变体在短期内是有益的,但它们无法进入较低活性和较低NTR可及性的状态会导致共聚集倾向增加,可能会引发早期白内障。这些结果支持了一个模型,即伴侣蛋白活性和溶解度是通过准有序的NTR及其多种竞争性相互作用来调节的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67d1/12107100/4257e8d56cf7/pnas.2425061122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验