Zheng Yifei, Wu Lingling, Zhang Qiucai, Hu Lin, Tian Yakun, Wang Min, Zheng Huaimiao, Zhang Zhijun
School of Resources, Environment and Safety Engineering, University of South China, Zhengxiang, Hengyang, 421001, China.
Hunan Provincial Mining Geotechnical Engineering Disaster Prediction and Control Engineering Technology Research Center, Hengyang, 421001, China.
J Mol Model. 2025 May 19;31(6):164. doi: 10.1007/s00894-025-06369-w.
Urease is pivotal in microbial-induced calcium carbonate precipitation (MICP), where its catalytic efficiency directly governs calcium carbonate formation. However, practical MICP applications in extreme environments (e.g., acidic mine drainage, industrial waste sites) are hindered by limited understanding of urease behavior under extreme pH conditions. This study combines laboratory experiments and constant pH molecular dynamics (CpHMD) simulations to investigate how pH variations (3-11) affect the structural stability of Sporosarcina pasteurii urease, focusing on its α-subunit (PDB: 4CEU). Experimental validation identified pH 7-8 as optimal for urease activity, aligning with molecular dynamics results showing minimal structural deviations (RMSD) and stable protonation states under neutral to mildly alkaline conditions. Extreme pH (3, 4, 11) disrupted active-site geometry and induced charge fluctuations, impairing catalytic function. CpHMD simulations revealed that the α-subunit retains structural integrity at pH 7-8, suggesting potential reassembly post-environmental stress. This work bridges gaps in enzymatic stability under harsh conditions, offering insights for optimizing MICP in geotechnical and environmental remediation applications.
The study combined experimental and computational approaches. Sporosarcina pasteurii urease activity was experimentally assessed across pH 3-11 by monitoring urea hydrolysis-induced conductivity changes. Computational analyses employed GROMACS constant pH with the CHARMM36 force field to perform pH-dependent molecular dynamics simulations. The urease structure was solvated, neutralized, energy-minimized, and subjected to constant pH simulations. Structural stability, active site dynamics, and protonation states of titratable residues were analyzed via RMSD, hydrogen bonds, solvent-accessible surface area (SASA), and Epock 1.0.5. Free energy landscapes and residue interactions were evaluated using principal component analysis (PCA) and λ-dynamics. Experimental data were processed with OriginPro 2024b and Python, linking pH-induced conformational shifts to enzymatic function.
脲酶在微生物诱导碳酸钙沉淀(MICP)过程中起着关键作用,其催化效率直接决定碳酸钙的形成。然而,由于对极端pH条件下脲酶行为的了解有限,限制了MICP在极端环境(如酸性矿山排水、工业废弃物场地)中的实际应用。本研究结合实验室实验和恒定pH分子动力学(CpHMD)模拟,研究pH值变化(3 - 11)如何影响巴氏芽孢八叠球菌脲酶的结构稳定性,重点关注其α亚基(蛋白质数据银行编号:4CEU)。实验验证确定pH值7 - 8是脲酶活性的最佳条件,这与分子动力学结果一致,即在中性至轻度碱性条件下结构偏差最小(均方根偏差,RMSD)且质子化状态稳定。极端pH值(3、4、11)破坏了活性位点的几何结构并引起电荷波动,损害了催化功能。CpHMD模拟表明,α亚基在pH值7 - 8时保持结构完整性,这表明在环境应激后可能重新组装。这项工作填补了恶劣条件下酶稳定性方面的空白,为优化岩土工程和环境修复应用中的MICP提供了见解。
本研究结合了实验和计算方法。通过监测尿素水解引起的电导率变化,对巴氏芽孢八叠球菌脲酶在pH值3 - 11范围内的活性进行了实验评估。计算分析采用带有CHARMM36力场的GROMACS恒定pH方法进行pH依赖的分子动力学模拟。脲酶结构进行了溶剂化、中和、能量最小化处理,并进行了恒定pH模拟。通过均方根偏差、氢键、溶剂可及表面积(SASA)和Epock 1.0.5分析了结构稳定性、活性位点动力学和可滴定残基的质子化状态。使用主成分分析(PCA)和λ动力学评估了自由能景观和残基相互作用。实验数据用OriginPro 2024b和Python进行处理,将pH诱导的构象变化与酶功能联系起来。