Khatrawi Elham Mohammed, Luqman Ali Syed, Ali Syed Yasir, Abduldayeva Aigul, Mugibel Muna Ali Abdullah
Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia.
Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan.
Viral Immunol. 2025 Jun;38(5):157-171. doi: 10.1089/vim.2025.0021. Epub 2025 May 22.
Human metapneumovirus (HMPV) is a prominent respiratory pathogen causing significant morbidity and mortality worldwide, mostly in young teenagers, the old, and immunocompromised individuals. Despite its clinical impact, no licensed vaccine is currently available, highlighting the urgent need for effective prophylactic strategies. This research aimed to design a multiepitope vaccine (MEV) targeting conserved and immunodominant regions of HMPV, leveraging immunoinformatics tools to ensure broad coverage and efficacy against the virus and its diverse sublineages. Glycoproteins from HMPV genotypes A2a, A2b, and A2c were analyzed to identify 18 highly antigenic and overlapping epitopes capable of eliciting robust B-cell, T-cell, and interferon-gamma (IFN-γ)-mediated immune responses. Toxicity and allergenicity studies confirmed the safety of particular epitopes, which were incorporated into two vaccine constructs using immunogenic linkers and adjuvants. The chimeric vaccines displayed high antigenicity, molecular stability, and nonallergenic properties. Structural refinement and Ramachandran plot analyses established the stability and accuracy of the 3D models. Molecular docking studies verified strong interactions with immune receptors, particularly toll-like receptor (TLR)2, TLR3, TLR4, TLR8, and human leukocyte antigen molecules, indicating robust immune stimulation potential. Molecular dynamics simulations further validated the vaccine's stability and interaction dynamics, with immune simulations predicting promising responses. The designed vaccine constructs were shown to be highly soluble, stable, and suitable for recombinant expression in , enabling further biochemical and immunoreactivity validation. These findings provide a foundation for next-generation vaccine development against HMPV, offering promising avenues for clinical application and future research. [Figure: see text].
人偏肺病毒(HMPV)是一种重要的呼吸道病原体,在全球范围内导致显著的发病率和死亡率,主要发生在青少年、老年人和免疫功能低下的个体中。尽管其具有临床影响,但目前尚无获批的疫苗,这凸显了对有效预防策略的迫切需求。本研究旨在设计一种针对HMPV保守和免疫显性区域的多表位疫苗(MEV),利用免疫信息学工具确保对该病毒及其不同亚谱系具有广泛的覆盖范围和有效性。对HMPV A2a、A2b和A2c基因型的糖蛋白进行了分析,以鉴定出18个能够引发强大的B细胞、T细胞和干扰素-γ(IFN-γ)介导的免疫反应的高抗原性和重叠表位。毒性和致敏性研究证实了特定表位的安全性,这些表位使用免疫原性接头和佐剂被纳入两种疫苗构建体中。嵌合疫苗表现出高抗原性、分子稳定性和无致敏特性。结构优化和拉氏图分析确定了三维模型的稳定性和准确性。分子对接研究验证了与免疫受体,特别是Toll样受体(TLR)2、TLR3、TLR4、TLR8和人类白细胞抗原分子的强相互作用,表明具有强大的免疫刺激潜力。分子动力学模拟进一步验证了疫苗的稳定性和相互作用动力学,免疫模拟预测了良好的反应。所设计的疫苗构建体显示出高度可溶性、稳定性,适合在[具体表达系统]中进行重组表达,从而能够进一步进行生化和免疫反应性验证。这些发现为针对HMPV的下一代疫苗开发奠定了基础,为临床应用和未来研究提供了有前景的途径。[图:见正文]