Suppr超能文献

化疗癌症患者症状升级的前瞻性预测

Preemptive Forecasting of Symptom Escalation in Cancer Patients Undergoing Chemotherapy.

作者信息

Finkelstein Joseph, Smiley Aref, Echeverria Christina, Mooney Kathi

机构信息

Department of Biomedical Informatics, The University of Utah, Salt Lake City, UT, USA.

College of Nursing, The University of Utah, Salt Lake City, UT, USA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:427-432. eCollection 2024.

Abstract

This study evaluates the utility of machine learning (ML) algorithms in early forecasting of total symptom score changes from daily self-reports of 339 chemotherapy patients. The dataset comprised 12 specific symptoms, with severity and distress for each symptom rated on a 1 to 10 scale, generating a "total symptom score" ranging from 0 to 230. To address the challenge of an unbalanced original dataset, where Class I (score change ≥ 5) and Class II (score change < 5) were unevenly represented, we created a balanced dataset specifically for model training. This process involved a stratified sampling technique to ensure equitable representation of both classes, enhancing the predictive analysis. Using the MATLAB® Classification Learner application, we investigated nine ML models, including decision trees, discriminant analysis, support vector machines (SVM), and others, each applying various classifiers. The objective was to predict the total symptom score change based on the preceding 3 to 5 days' symptom data. Models were trained on the balanced dataset to mitigate the original imbalance's impact, with comparative evaluations also conducted on the unbalanced data to assess performance differences. The analysis revealed that certain classifiers, such as SVM, delivered optimal performance on the unbalanced dataset, with an accuracy rate peaking at 82%. Yet, these models tended to frequently misclassify Class I as Class II. In contrast, the Ensemble algorithm equipped with the RUSBoost classifier demonstrated exceptional skill in accurately classifying both classes on both datasets, achieving accuracies of 59%, 59.3%, and 59.4% for data from 3, 4, and 5 days prior, respectively. Notably, these figures slightly improved to 61.16%, 58.41%, and 60.05% upon utilizing the balanced dataset for training. The deployment of a balanced dataset for model training underscores the significant potential of ML algorithms in improving symptom management for chemotherapy patients, offering a path to enhanced patient care and quality of life through targeted, personalized symptom monitoring.

摘要

本研究评估了机器学习(ML)算法在早期预测339名化疗患者每日自我报告的总症状评分变化方面的效用。数据集包含12种特定症状,每种症状的严重程度和痛苦程度按1至10分进行评分,从而产生一个范围从0到230的“总症状评分”。为应对原始数据集不平衡的挑战,其中I类(评分变化≥5)和II类(评分变化<5)的表示不均衡,我们专门为模型训练创建了一个平衡数据集。此过程涉及分层抽样技术,以确保两类的公平表示,增强预测分析。使用MATLAB®分类学习器应用程序,我们研究了九种ML模型,包括决策树、判别分析、支持向量机(SVM)等,每个模型都应用了各种分类器。目标是根据前3至5天的症状数据预测总症状评分变化。模型在平衡数据集上进行训练,以减轻原始不平衡的影响,同时也在不平衡数据上进行比较评估,以评估性能差异。分析表明,某些分类器,如SVM,在不平衡数据集上表现出最佳性能,准确率最高达到82%。然而,这些模型往往经常将I类误分类为II类。相比之下,配备RUSBoost分类器的集成算法在准确分类两个数据集上的两类方面表现出卓越技能,对于前3天、4天和5天的数据,准确率分别达到59%、59.3%和59.4%。值得注意的是,在使用平衡数据集进行训练后,这些数字分别略微提高到61.16%、58.41%和60.05%。为模型训练部署平衡数据集突出了ML算法在改善化疗患者症状管理方面的巨大潜力,通过有针对性的、个性化的症状监测,为提高患者护理水平和生活质量提供了一条途径。

相似文献

1
Preemptive Forecasting of Symptom Escalation in Cancer Patients Undergoing Chemotherapy.
AMIA Annu Symp Proc. 2025 May 22;2024:427-432. eCollection 2024.
4
Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees.
Int J Environ Res Public Health. 2020 Dec 13;17(24):9322. doi: 10.3390/ijerph17249322.
5
Application of machine learning classifiers to X-ray diffraction imaging with medically relevant phantoms.
Med Phys. 2022 Jan;49(1):532-546. doi: 10.1002/mp.15366. Epub 2021 Dec 1.
6
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
Med Phys. 2018 Jul;45(7):3449-3459. doi: 10.1002/mp.12967. Epub 2018 Jun 13.
8
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Apr;36(4):345-352. doi: 10.3760/cma.j.cn121430-20230930-00832.
9
An intelligent warning model for early prediction of cardiac arrest in sepsis patients.
Comput Methods Programs Biomed. 2019 Sep;178:47-58. doi: 10.1016/j.cmpb.2019.06.010. Epub 2019 Jun 11.

本文引用的文献

3
NCCN Guidelines® Insights: Survivorship, Version 1.2023.
J Natl Compr Canc Netw. 2023 Aug;21(8):792-803. doi: 10.6004/jnccn.2023.0041.
4
Technology-Assisted mHealth Caregiver Support to Manage Cancer Patient Symptoms: A Randomized Controlled Trial.
J Pain Symptom Manage. 2023 Jul;66(1):33-43. doi: 10.1016/j.jpainsymman.2023.02.320. Epub 2023 Mar 7.
5
Implementing Machine Learning in the Electronic Health Record: Checklist of Essential Considerations.
Mayo Clin Proc. 2023 Mar;98(3):366-369. doi: 10.1016/j.mayocp.2023.01.013.
6
Using EHR Data to Identify Social Determinants of Health Affecting Disparities in Cancer Survival.
Stud Health Technol Inform. 2022 Jun 6;290:967-971. doi: 10.3233/SHTI220224.
7
Telerehabilitation for Patients with Cancer: A Scoping Review.
Stud Health Technol Inform. 2022 Jun 6;290:543-546. doi: 10.3233/SHTI220136.
8
Analysis of a Remote Monitoring Program for Symptoms Among Adults With Cancer Receiving Antineoplastic Therapy.
JAMA Netw Open. 2022 Mar 1;5(3):e221078. doi: 10.1001/jamanetworkopen.2022.1078.
10
Benefits of Digital Symptom Monitoring With Patient-Reported Outcomes During Adjuvant Cancer Treatment.
J Clin Oncol. 2021 Mar 1;39(7):701-703. doi: 10.1200/JCO.20.03375. Epub 2021 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验