Tikhonov Boris B, Lisichkin Daniil R, Sulman Alexandrina M, Sidorov Alexander I, Bykov Alexey V, Lugovoy Yury V, Karpenkov Alexey Y, Bronstein Lyudmila M, Matveeva Valentina G
Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia.
Department of Condensed Matter Physics, Tver State University, Zhelyabova St. 33, 170100 Tver, Russia.
Nanomaterials (Basel). 2025 May 15;15(10):740. doi: 10.3390/nano15100740.
Here, we report the development of a novel bifunctional nanobiocatalyst for a one-pot cascade transformation of carboxymethyl cellulose (CMC) to D-sorbitol. The nanobiocatalyst is based on magnetic nanoparticle aggregates (MNAs) functionalized with chitosan (CS) cross-linked by tripolyphosphate (TPP). It contains two types of catalytic sites: cellulase (Cel, 5 wt.%) and Ru (3 wt.%) nanoparticles (NPs) of 0.7 nm in diameter. To optimize the nanobiocatalyst structure and composition, we first synthesized the biocatalyst, MNA-CSP-Cel (CSP stands for the CS layer cross-linked by TPP), as well as the nanocatalyst, MNA-CSP-Ru, and studied them in the one-step reactions of hydrolysis and hydrogenation, respectively. The data obtained allowed us to optimize the composition and properties of the bifunctional nanobiocatalyst, MNA-CSP-Ru-Cel, and to choose the best reaction conditions for the cascade process. MNA-CSP-Ru-Cel was characterized using transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and porosity measurements. The knowledge obtained enabled us to perform a cascade transformation of CMC to D-sorbitol with a yield of 83.2% for 10 h at 70 °C and a hydrogen pressure of 4 MPa. The yield demonstrated in this work is much higher than that reported to date for the same cascade process.
在此,我们报道了一种新型双功能纳米生物催化剂的研发,该催化剂可用于将羧甲基纤维素(CMC)一锅法级联转化为D-山梨醇。这种纳米生物催化剂基于用三聚磷酸钠(TPP)交联的壳聚糖(CS)功能化的磁性纳米颗粒聚集体(MNA)。它包含两种类型的催化位点:纤维素酶(Cel,5 wt.%)和直径为0.7 nm的钌(3 wt.%)纳米颗粒(NP)。为了优化纳米生物催化剂的结构和组成,我们首先合成了生物催化剂MNA-CSP-Cel(CSP代表由TPP交联的CS层)以及纳米催化剂MNA-CSP-Ru,并分别在水解和氢化的一步反应中对它们进行了研究。所获得的数据使我们能够优化双功能纳米生物催化剂MNA-CSP-Ru-Cel的组成和性能,并为级联过程选择最佳反应条件。使用透射电子显微镜(TEM)、高分辨率TEM、能量色散光谱、X射线衍射、X射线光电子能谱和孔隙率测量对MNA-CSP-Ru-Cel进行了表征。所获得的知识使我们能够在70°C和4 MPa氢气压力下将CMC级联转化为D-山梨醇,10小时的产率为83.2%。这项工作中展示的产率远高于迄今为止报道的相同级联过程的产率。