Suppr超能文献

scE2EGAE:通过具有可微边采样的端到端细胞图可学习图自动编码器增强单细胞RNA测序数据分析

scE2EGAE: enhancing single-cell RNA-Seq data analysis through an end-to-end cell-graph-learnable graph autoencoder with differentiable edge sampling.

作者信息

Wang Shuo, Liu Yuanning, Zhang Hao, Liu Zhen

机构信息

College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun, 130012, Jilin, China.

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, Jilin, China.

出版信息

Biol Direct. 2025 May 27;20(1):66. doi: 10.1186/s13062-025-00616-z.

Abstract

BACKGROUND

Single-cell RNA sequencing (scRNA-Seq) technology reveals biological processes and molecular-level genomic information among individual cells. Numerous computational methods, including methods based on graph neural networks (GNNs), have been developed to enhance scRNA-Seq data analysis. However, existing GNNs-based methods usually construct fixed graphs by applying the k-nearest neighbors algorithm, which may result in information loss.

METHODS

To address this problem, we propose scE2EGAE, which learns cell graphs during the training processes. Firstly, the scRNA-Seq data is fed into a deep count autoencoder (DCA). Secondly, the hidden representations of DCA are extracted and then used to generate cell-to-cell graph edges through a straight-through estimator (STE) based on top-k sampling and Gumbel-Softmax. Finally, the generated cell-to-cell graph and scRNA-Seq data are fed into the GNNs-based downstream tasks. In this paper, we design a graph autoencoder which performs denoising on scRNA-Seq data as the downstream task.

RESULTS

We evaluate scE2EGAE on eight public scRNA-Seq datasets and compare its performance with seven existing scRNA-Seq data denoising methods. In this paper, extensive experiments are conducted, encompassing: 1) the evaluation of denoising performance, with metrics including mean absolute error, Pearson correlation coefficient, and cosine similarity; 2) the assessment of clustering performance of the denoised results, utilizing adjusted rand index, normalized mutual information and silhouette score; and 3) the evaluation of the cell trajectory inference performance of the denoised results, measured by the pseudo-temporal ordering score. The results show that, on the scRNA-Seq data denoising task, scE2EGAE outperforms most of the methods, proving that it can learn cell-to-cell graphs containing real information of cell-to-cell relationships.

CONCLUSIONS

In this paper, we validate the proposed scE2EGAE method through its application to the denoising task of scRNA-Seq data. This method demonstrates its capability to learn inter-cellular relationships and construct cell-to-cell graphs, thereby enhancing the downstream analysis of scRNA-Seq data. Our approach can serve as an inspiration for future research on scRNA-Seq analysis methods based on GNNs, holding broad application prospects.

摘要

背景

单细胞RNA测序(scRNA-Seq)技术揭示了单个细胞之间的生物学过程和分子水平的基因组信息。已经开发了许多计算方法,包括基于图神经网络(GNN)的方法,以加强scRNA-Seq数据分析。然而,现有的基于GNN的方法通常通过应用k近邻算法构建固定图,这可能导致信息丢失。

方法

为了解决这个问题,我们提出了scE2EGAE,它在训练过程中学习细胞图。首先,将scRNA-Seq数据输入深度计数自动编码器(DCA)。其次,提取DCA的隐藏表示,然后通过基于top-k采样和Gumbel-Softmax的直通估计器(STE)用于生成细胞间图边。最后,将生成的细胞间图和scRNA-Seq数据输入基于GNN的下游任务。在本文中,我们设计了一种图自动编码器,它对scRNA-Seq数据执行去噪作为下游任务。

结果

我们在八个公开的scRNA-Seq数据集上评估scE2EGAE,并将其性能与七种现有的scRNA-Seq数据去噪方法进行比较。在本文中,进行了广泛的实验,包括:1)去噪性能评估,指标包括平均绝对误差、皮尔逊相关系数和余弦相似度;2)利用调整兰德指数、归一化互信息和轮廓分数评估去噪结果的聚类性能;3)通过伪时间排序分数评估去噪结果的细胞轨迹推断性能。结果表明,在scRNA-Seq数据去噪任务上,scE2EGAE优于大多数方法,证明它可以学习包含细胞间关系真实信息得细胞间图。

结论

在本文中,我们通过将所提出的scE2EGAE方法应用于scRNA-Seq数据的去噪任务来验证该方法。该方法展示了其学习细胞间关系和构建细胞间图的能力,从而增强了scRNA-Seq数据的下游分析。我们的方法可以为未来基于GNN的scRNA-Seq分析方法的研究提供启示,具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验