Suppr超能文献

机器学习算法在撒哈拉以南非洲六个高生育率国家的育龄妇女中用于构建知情避孕选择预测模型的应用。

Application of machine learning algorithms to model predictors of informed contraceptive choice among reproductive age women in six high fertility rate sub Sahara Africa countries.

作者信息

Melaku Mequannent Sharew, Yohannes Lamrot, Sharew Berhanu, Derseh Mintesnot Hawaz, Taye Eliyas Addisu

机构信息

Department of Health Informatics, Institute of Public Health, University of Gondar, Gondar, Ethiopia.

Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.

出版信息

BMC Public Health. 2025 May 29;25(1):1986. doi: 10.1186/s12889-025-23242-w.

Abstract

INTRODUCTION

Informed contraceptive choice is declared when a woman selects a methods of contraceptive after receiving comprehensive information on available alternatives, side effects, and management if adverse effect happens. Access to contraceptive information is a fundamental right, crucial for reducing fertility and unintended pregnancies and related complications. Despite efforts to reduce fertility, Sub-Saharan Africa region is still accounts for over half of the global births due to low contraceptive use, high discontinuation rate, and unmet needs, often linked to uninformed contraceptive choice. While studies on informed contraceptive choice are available using classical regression analysis, the diverse nature of factors have not been systematically analyzed using machine learning algorithms. Hence, this study aimed to apply machine learning algorithms to model predictors of informed contraceptive choices among reproductive age women in six high fertility rate Sub Sahara Africa countries.

METHODS

This study used 11,706 weighted women aggregated from 6 high fertility rate countries in Sub Saharan Africa including Mali, Angola, Burundi, Nigeria, Gambia, and Burkina Faso, collected using stratified sampling techniques. Data cleaning, weighting, and descriptive statistical analyses were conducted using STATA version 17 and Excel 2019, while machine learning analysis was performed using Python 3.12. Furthermore, Random Forest, eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), Naïve Bayes, Decision Tree, Logistic Regression, and Adaptive Boosting (AdaBoost) were employed to predict informed contraceptive choice and to identify its predictors. Shapley Additive Explanations (SHAP) was used to assess the link between predictors and informed contraceptive choice. Accuracy and area under the curve (AUC), along with precision, recall, and F1 score, were used to evaluate the performance of the predictive models.

RESULTS

About 58% women receive informed choice of contraceptive methods, ranges 29% in Burundi to 77% in Burkina Faso. Moreover, the highest spatial clustering of informed choice of contraceptive methods cases was observed in Burkina Faso while the lowest is clustering was found in Angola. LGBM model achieved an accuracy of 73%, area under the curve (AUC) of 0.80, precision of 71, and recall of 77. The SHAP analysis revealed that health facility visits within 12 months, religion, source of contraceptive, exposure to family planning message, mobile ownership, education, wealth index, under five children, residence, and total life time partner were the top ten predictors of informed contraceptive choice.

CONCLUSION

Nearly six out of ten women received informed contraceptive choice, the magnitude is highest in Burkina Faso and lowest in Mali. Moreover, the highest spatial clustering of informed choice of contraceptive was observed in Burkina Faso while the lowest clustering was found in Angola. The LGBM classifier outperformed among machine learning algorithms and achieved 73% accuracy and an AUC of 0.80. Key factors influencing informed contraceptive choice were health facility visits, religion, contraceptive source, family planning messages, mobile ownership, education, wealth, residence, and lifetime partners. To enhance informed contraceptive choice, governments and policymakers should strengthen family planning education, expand healthcare services, and ensure equitable access to contraceptive information. Digital health solutions, especially mobile-based platforms, can also bridge information gaps. Integrating counseling into routine healthcare, training providers, and expanding mass media campaigns can enhance awareness. Engaging communities can help overcome social and religious barriers. Continuous monitoring and data-driven policy adjustments are essential for responsive interventions that address the evolving reproductive health needs in sub-Saharan Africa. Finally, we recommend that future research validate these findings using external data sources.

摘要

引言

当一名女性在获得有关现有避孕方法、副作用以及不良反应发生时的处理等全面信息后选择一种避孕方法时,即实现了知情避孕选择。获取避孕信息是一项基本权利,对于降低生育率、减少意外怀孕及相关并发症至关重要。尽管为降低生育率做出了努力,但由于避孕措施使用率低、停用率高以及需求未得到满足(这往往与缺乏知情避孕选择有关),撒哈拉以南非洲地区仍占全球出生人口的一半以上。虽然已有研究使用经典回归分析来探讨知情避孕选择,但尚未使用机器学习算法对各种因素进行系统分析。因此,本研究旨在应用机器学习算法对撒哈拉以南非洲六个高生育率国家育龄妇女的知情避孕选择预测因素进行建模。

方法

本研究使用了从撒哈拉以南非洲六个高生育率国家(包括马里、安哥拉、布隆迪、尼日利亚、冈比亚和布基纳法索)采用分层抽样技术收集的11,706名加权女性的数据。使用STATA 17版和Excel 2019进行数据清理、加权和描述性统计分析,而使用Python 3.12进行机器学习分析。此外,采用随机森林、极端梯度提升(XGBoost)、轻量级梯度提升机(LGBM)、朴素贝叶斯、决策树、逻辑回归和自适应提升(AdaBoost)来预测知情避孕选择并识别其预测因素。使用Shapley值附加解释(SHAP)来评估预测因素与知情避孕选择之间的联系。使用准确率、曲线下面积(AUC)以及精确率、召回率和F1分数来评估预测模型的性能。

结果

约58%的女性获得了避孕方法的知情选择,范围从布隆迪的29%到布基纳法索的77%。此外,在布基纳法索观察到避孕方法知情选择案例的空间聚类最高,而在安哥拉发现聚类最低。LGBM模型的准确率达到73%,曲线下面积(AUC)为0.80,精确率为71,召回率为77。SHAP分析表明,12个月内的医疗机构就诊、宗教信仰、避孕来源、接触计划生育信息、拥有手机、教育程度、财富指数、五岁以下子女数量、居住地以及终生伴侣数量是知情避孕选择的十大预测因素。

结论

近十分之六的女性获得了知情避孕选择,这一比例在布基纳法索最高,在马里最低。此外,在布基纳法索观察到避孕知情选择的空间聚类最高,而在安哥拉聚类最低。LGBM分类器在机器学习算法中表现最佳,准确率达到 73%,AUC为0.80。影响知情避孕选择的关键因素包括医疗机构就诊、宗教信仰、避孕来源、计划生育信息、拥有手机、教育程度、财富、居住地和终生伴侣。为了加强知情避孕选择,政府和政策制定者应加强计划生育教育,扩大医疗服务,并确保公平获取避孕信息。数字健康解决方案,特别是基于移动设备的平台,也可以弥合信息差距。将咨询纳入常规医疗保健、培训提供者以及扩大大众媒体宣传活动可以提高认识。让社区参与有助于克服社会和宗教障碍。持续监测和数据驱动的政策调整对于应对撒哈拉以南非洲不断变化的生殖健康需求的响应性干预措施至关重要。最后,我们建议未来的研究使用外部数据源验证这些发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验